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A good laugh
is a mighty good thing,

and rather too scarce a good thing;
the more’s the pity.

Herman Melville, Moby Dick, Chapter 5

God keep me from ever completing anything.
This whole book is but a draught –
nay, but the draught of a draught.

Oh, Time, Strength, Cash, and Patience!

ibidem, Chapter 32

Thou canst not tell where one drop of water
or one grain of sand will be to-morrow noon.

And yet with thy impotence thou insultest the sun!
Science! Curse thee, thou vain toy!

ibidem, Chapter 118





Preface

Multimedia information retrieval – or: media understanding – is the content-
based analysis of audio, bioinformation, biosignals, images, text and video data.
In this textbook, we introduce the general concepts of media understanding as
well as models and algorithms for feature extraction and categorization. In to-
day’s multimedia retrieval science, it is common to work on one type of media
only. In consequence, computer vision experts often know little about content-
based analysis of audio, biosignal experts are ignorant of text information re-
trieval, etc. I consider this mutual unawareness disadvantageous to all the named
areas of research. There is, for example, a lot that biosignal experts could learn
from audio experts and vice versa. Therefore, with this textbook I intend to
provide a contribution to bridging the gap of ignorance by comparing methods
employed in different domains, emphasizing their communalities and grouping
them by fundamental types of strategies.

The entire book has three parts. The first part introduces the big picture
of media understanding and covers fundamental concepts of feature extraction,
information filtering and categorization. Furthermore, it discusses the practical
implementation of media understanding applications and provides a comprehen-
sive list of similarity and distance measures. The second part extends the big
picture and covers advanced topics such as local and spectral features, risk min-
imization, kernel-based methods and dynamic models for categorization. The
third part investigates the current frontiers of media understanding science. We
review semantic methods for media description, dynamic aspects of filtering
and categorization as well as human-like similarity measurement. Eventually,
we sketch the neuralization of the bigger picture of media understanding. All
three parts together provide a systematic introduction to this field of research
by analyzing and clustering of the practically relevant methods.

The approach described in this book originates from my lectures at the Vi-
enna University of Technology where I have taught content-based visual retrieval,
audio analysis, text information retrieval and related topics in graduate courses
for more than a decade. Over the years, I found the methods employed in the dif-
ferent domains surprisingly similar and started working systematically on iden-
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tifying communalities and dissimilarities of the signal processing and machine
learning algorithms employed. Feeding the results back into the lectures showed
that my students understood the algorithms and applications in the different
media domains much better if they had learnt the principal models before.

The book assumes a reader with good knowledge in computer science but not
one who has already worked in one of the above-named research domains. Where
necessary, references to textbooks are given that cover important foundations of
the methods discussed in the book. However, I do not provide a reference where
it is sufficient to type the keyword into a web search engine. I recommend you
to compare what is written in this book to what other authors write on the web
and in related books. Viewing a problem from as many perspectives as possible
is always beneficial!

Additional material (exercises, links to software, etc.) can be found at at-
press.info/mmir. You are invited to make use of the information available on
the web page. If you would like to share your experiences and opinions with me,
please e-mail to contact@atpress.info.

I would like to express my thanks to Christian Breiteneder for supporting
me in my work over many years, and to Markus Hörhan, Dalibor Mitrovic,
Robert Sorschag, Maia Zaharieva and Matthias Zeppelzauer for many fruitful
discussions and for sharing their knowledge with me. Furthermore, I would
like to thank my students for their active participation and their interesting
contributions. Last not least I would like to thank Ingrid and the kids for more
than I can say.

Horst Eidenberger
Vienna, October 31, 2013
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Chapter 1

Introduction

States the problem of multimedia information retrieval, describes and argues for
our approach, introduces the employed notation, discusses the target audiences
and gives an overview over the contents, including some suggested paths for par-
ticular types of readers.

1.1 The Problem

The three parts of this book provide a thorough introduction into the research
areas of computer science that deal with the content analysis and categorization
of digital media, including audio retrieval, biosignal processing, content-based
image retrieval, environmental sound classification, face recognition, genome
analysis, music genre classification, speech recognition, technical stock analysis,
text retrieval, video analysis and video surveillance, to name a few. We summa-
rize these areas under multimedia information retrieval and – more frequently
– media understanding, since we realize that they share some very important
properties:

• They exploit digital signals.

• Signals are summarized by signal processing.

• Summaries are classified by machine learning algorithms.

3



4 CHAPTER 1. INTRODUCTION

Digital audio, biosignals, digital images and digital video are data sources
that have been investigated in signal processing1 for many years. Text and
bioinformation, on the contrary, are usually not considered appropriate input
for signal processing operations. Closer investigation in the following chapters,
however, will show that the summarization methods employed on text and, for
example, gene strings are comparable to sample-based signal processing opera-
tions. In short, multimedia information retrieval aims at the imitation of the
sensual pattern recognition capabilities of the human being.

Multimedia information retrieval wants to achieve more than just summa-
rization: the computational understanding of media content that is comparable
to the understanding of humans. Therefore, machine learning2 algorithms are
employed for the interpretation of digital media summaries. No matter if the
data type is audio, image, video, text or some other, machine learning algo-
rithms employ the same learning and classification strategies. Hence, very sim-
ilar methods are, for example, used in structural alignment of gene sequences
and the classification of video events based on prototypes.

Media understanding – our preferred writing below – is not a very popular
term in computer science. We choose it because it emphasizes the multimedia as-
pect of media analysis. The term is derived from the popular image understand-
ing, the attempt to analyze images in human-like fashion. Media understanding
should do the same to multimedia content (frequently, also transmedia). One
reason for the limited popularity of the term media understanding may be that
today hardly any researcher works on the analysis of true multimedia content.
Rather, researchers are specialized in image retrieval, computer vision, music
retrieval, speech recognition or some other area. Unfortunately, while diving
deeply into their focus area, hardly any exchange happens between the research
areas and, in consequence, opportunities for mutual stimulation are lost. This
exchange is exactly the goal of this publication. See below Section 1.3 for details
on this issue.

All multimedia information retrieval disciplines work on digital media, i.e.
one- or multi-dimensional data streams of samples perceived through human-like
senses (e.g. audio recording, text reading) or more or less sophisticated capturing
mechanisms (e.g. ECG electrodes, gene string analysis by gel electrophoresis).
Natural or artificial, the media understanding process has to find solutions for a
number of fundamental interpretation and engineering problems.

1For this book, we define signal processing as all reasonable methods of transformation
from one signal to another.

2In contrast to signal processing, all algorithms that achieve the transformation of limited
signals to nameable categories. For the sake of simplicity, we use the terms ’signal processing’
and ’machine learning’ in a very loosely defined way in the first two chapters of this book. The
usage will become more precise in later chapters.
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• Polysemy

• Gravity of the sample

• Incomplete categories and magic values

• Curse of dimensionality

• Performance

• Noise, distortions and missing data

Polysemy refers to the fact that, often, media information can be interpreted
in more than one way. Simple examples are photos that show more than one
motif. For example, a video showing a dog chasing a running person may be
interpreted as a police operation or as the recreative activity of a dog owner.
The interpretation depends on the context of the scene. Polysemy is a particu-
larly hard problem in text retrieval where the meaning of words and sentences
depends heavily on the meaning of the text. Dealing with polysemy and context
interpretation will be a guiding theme throughout this book.

Gravity of the sample refers to the signal processing aspect of multimedia in-
formation retrieval. Many methods employed on audio, image, video and other
signals operate on groups of – if not individual – samples, that way losing the
context of larger events almost completely. This problem is also referred to as
the semantic gap. That is the difference in sophistication between the high-level
events that human beings easily grasp from media content (e.g. an ECG pulse,
faces in an image, the guitar part in a rock song) and the low-level information
that computers are able to extract (e.g. the fundamental frequency of a piece
of audio). In-between the two levels lie layers of context and interpretation. It
is a major endeavor of multimedia information retrieval research to bridge the
semantic gap and move from sample-wise signal processing to human-like so-
phisticated interpretation. We contribute to this end by comparing approaches
from separated disciplines and by developing an iterative model of media under-
standing.

The third problem on the list, incomplete categories, is connected to the fact,
that most areas of multimedia information retrieval depend heavily on examples
provided by humans. In particular, the machine learning component is helpless
without good examples for learning. Here, good means well-balanced, compre-
hensive and differentiated. Non-surprisingly, such examples are hard to provide.
The necessary effort is often neglected by computer scientists who are mostly
concerned with their models and procedures. However, experience shows that
progress in media understanding correlates with good data. One particular dan-
ger of incomplete categories is the introduction of magical values. If the input
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data does not represent the learning problem in the full width and depth, it be-
comes tempting to use clever quantization, tailor-made transformations, etc. in
order to optimize the quality of the results. Needless to say, such solutions gen-
eralize very badly. Confronted with an unconsidered case from the same domain
the media understanding algorithm fails. It appears that today all too often
incomplete categories are exploited by – often, hidden – magical enhancements.
Such research, however good the tuned results are, is worthless.

The curse of dimensionality problem is not specific for multimedia informa-
tion retrieval. It stands for the difficulties caused by large sets of parameters
that need to be controlled by the investigator. In multimedia information re-
trieval, operational blocks of signal processing and machine learning are com-
bined to solve particular media recognition problems. If each method requires a
few parameters we soon end up with hardly handleable sets of degrees of free-
dom. In consequence, testing and evaluation in media understanding consume
a significant share of the time, because every new parameter multiplies the di-
mensionality of the problem. Simplification by the elimination of parameters is
a must in media retrieval.

So is performance optimization since large amounts of data need to be pro-
cessed by complex operations. For example, the indexing of all goals scored in
one season of the English Premier League amounts to the investigation of 34200
minutes of high-definition video. Still, this is a small application compared to
automatic video surveillance of a large city such as Paris. Similarly, structural
alignment of gene sequences requires considerable resources. Since the processing
power of even the largest supercomputer is limited (and very expensive) algo-
rithmic optimization is the only way to do sophisticated multimedia information
retrieval.

Eventually, dealing with noise, distortions and missing data is a practical
problem of media understanding. Noise is almost ever present in digital media
simply because the sensing process is particularly prone to noise. Occlusions are
obvious in visual material (e.g. identifying faces when sometimes features are
occluded by beards or sunglasses) but do, likewise, occur in other media types.
For example, certain sounds are masked by others and lost. Some words are
are ignored during reading, etc.3 Like the other fundamental problems the han-
dling of noise and distortions is a recurring topic of media understanding.

In summary, media understanding spans an umbrella over a large group
of research disciplines that deal with the summarization and interpretation of
digital media content. The objective is to imitate humans as good as possible
with the benefits that computers are cheap and do not get tired. Unfortunately,
the state-of-the-art in multimedia information retrieval is – in most areas – still
far off the goal. Current media understanding applications can only assist human

3Did you spot the second are in the last sentence?
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classification of digital media. The aim of this book is to bridge the gaps between
the fields of media understanding and to enable learning from each other’s best
practices.

In the remainder of this chapter, we discuss our approach to the formulation
of a unified theory of media understanding (next section). Section 1.3 reflects
the intended audiences of the book and sketches some paths through the book
for important groups of readers. The last section gives an overview over all parts
and chapters of the book with the intention to show that we move in a step-
by-step manner from simple to sophisticated multimedia information retrieval
problems.

1.2 Our Approach

In this section, we discuss our approach to integrate the various areas of research
summarized as media understanding. We discuss the goals connected to the
integration process, the obstacles on the way and the positive and negative
results caused by it. In the last part of the section, we reflect the form of
argumentation: Should it be mathematical or statistical?

Foremost intention of the three parts of this book is to deliver an overview
over the majority of methods employed in the media understanding areas of
research. Besides explaining the intentions connected to each method and the
process in which it is embedded, our focus is on stressing the communalities
and differences of the methods. Critical reflection of the similarities of methods
employed in two or more fields – but likewise, within a field – should have a
positive influence on the learning process. Eventually, the reader should become
able to understand the degrees of freedom that exist in multimedia information
retrieval – independent if the domain is video, audio or some other data type.
By understanding the analysis of all major data types, the reader is enabled to
implement media understanding applications on multimedia content as well as
on single-media content.

It will turn out that the same basic operations are employed in the procedures
designed for music genre classification as for biosignal detection. The paramount
principle of this textbook can be formulated as applying signal processing on the
signal processing methods used in multimedia retrieval in order to summarize
them and to show that, actually, these summaries are very similar for the fields
of research investigated. Furthermore, we do a classification of the classification
methods of media understanding in order to show that not the data type is
decisive for the selection of a particular machine learning method but the avail-
ability of human judgment on the data. That is, we apply media understanding
on itself for the benefit of understanding how it is being done, which methods
reappear frequently and which strategies are employed for fine-tuning.
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Brainstorming the last paragraph – so to say, the vision statement of this
textbook – we come up with two major difficulties:

• Understandability versus preciseness

• One mathematical language versus many

Our intention is to provide the reader with a clear understanding of the
concepts of media understanding. However, media understanding is as an inde-
pendent method, as mentioned in the previous section, hardly existent today.
Rather, researchers focus on one particular data type and try to optimize their
results by fine-tuning their procedures. It is a widespread belief that genuine
methods are employed in the individual fields. For example, audio specialists
pay attention to developing their methods further but do usually not pay atten-
tion to what is going on in the video domain, and vice versa. We consider this
mutual ignorance unfortunate since many potentials lie in the communalities of
these – only at first sight fundamentally different – approaches.

However, it is impossible to achieve the desired understanding and to build
bridges between the areas of research while delivering the same degree of pre-
ciseness as a textbook for one particular problem would. We have to give up a
bit of preciseness for the benefit of uncovering similarities between the methods.
Below, we will argue for our approach with the benefits of general understanding.
For the moment, let us state that we aim at the development of a harmonic,
i.e. conflict-free, scientific system over all disciplines of multimedia informa-
tion retrieval. We accept a certain loss of preciseness in the explanation of the
individual methods and procedures for the benefit of a general theory.4

Doubting that different data types would require fundamentally different
approaches, we believe that the status quo of multimedia information retrieval
has been reached by a tendency of researchers for ignoring what is going on
outside their immediate environment. If this hypothesis is correct, we may
uncover in due process principles and potentials true for more than one area
of media understanding. Principles are models, methods, algorithms that work
in the same manner (except some fine-tuning and magic) in more than one
discipline while potentials are principles successfully applied in one area but so
far ignored in others. We are positive that these benefits exceed the loss from a
less precise description of the individual methods.

However, one problem is hidden in our determination to develop a conflict-
free system. It becomes visible when we approach the problem from the game-
theoretic point of view. Describing the slightly different components of related
systems is like having different interpretations competing for the rank of the best

4Alfred North Whitehead formulated this principle in his Introduction to Mathematics as:
”To see what is general in what is particular and what is permanent in what is transitory is
the aim of scientific thought.”
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explanation. In such a game usually more than one Nash equilibrium exists.
Unfortunately, Nash equilibria, though conflict-free, may take awkward forms.
It is, therefore, not enough for us to search for some harmonic description of the
methods employed in more than one area of multimedia information retrieval
research. Moreover, we have to mind that the chosen explanation represents all
instances of usage in a reasonable way.

The second major difficulty of our approach is defining a common mathe-
matical language of media understanding. Biosignal processing, audio retrieval,
computer vision and the other fields under consideration have developed sophis-
ticated notations that are to a large degree incomprehensible to the non-expert.
On closer examination, it appears, however, that the differences are not funda-
mental but mostly founded in the employed notation. It is, therefore, tempting
to try a unification of the individual notation systems. Mutual understanding
requires recognizing one’s own concepts in the other field. Concept recognition
requires understanding the language used for description.

Hence, we introduce a unified notation for media understanding. The full
details can be found in Appendix A. The major concepts are introduced in
the next two chapters (media representation, media processing steps). Further
elements are introduced on first occurrence. The general idea of our notation is
that algorithmic concepts are preferred from mathematic concepts. The reasons
for this decision are given in the last part of this section. Practically, media
objects are represented by arrays, many functions hold the upper hand over few
operators and employed names are pre-defined for the usage of variables (e.g.
weights) and constants.

One principal advantage of the common notation is that once learnt it can be
applied to all other methods and areas of research in the same fashion. Certain
data structures and transformations are clear on first sight. Misinterpretations
are avoided, and a steep learning curve is achieved. The disadvantage to this
advantage is that a new notation has to be learnt. The notations used, for
example, in image understanding are very sophisticated. There is no need for
the image specialist to learn a new notation. The available one can be used for
everything that is required. However, we target at the image specialist who is
interested in what is going on in the biosignal or audio domain. There, different
notations are employed that would hinder the quick apprehension. It is an
advantage of the common notation that it eliminates this problem. Furthermore,
the notation may contribute to the overall goal of identifying potentials in some
areas of research that are not fully exploited yet. If certain functions, variables,
etc. are not used in one area it should be questioned, why? For some technical
reason or just out of ignorance? The common notation enables answering such
questions rapidly.

Eventually, the understandability versus preciseness problem should also be
discussed from the point of view of the common notation. Certainly, the nota-
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tion is – for good reasons – not sufficiently differentiated for allowing to express
all details of a particular method. On the contrary, certain aspects of fine-tuning
cannot be expressed in this mathematical system. For this loss of preciseness,
we gain the guarantee that similarities hidden in methods can more easily be
identified. Practical experience supports this view. It is a frequent experience in
multimedia information retrieval that the principal model accounts for approx-
imately 80 per cent of the quality of some method while fine-tuning accounts
for 20 per cent or less. This 80:20 rule appears in various forms in multimedia
retrieval, e.g. signal to noise relationships in biosignals, fundamental frequency
of music versus overtone structures, fundamental face features to high-frequency
information, object shapes to textures, etc. With the common notation we focus
on the 80 per cent communalities while giving up the 20 per cent differences for
the benefit of better understanding.

Apart from vision and notation, one further issue requires discussion in this
section. It is the question how the presented processes and methods are argued
for. Of course, all the demonstrated algorithms are practically used in one or
more media understanding disciplines. Methods (e.g. from signal processing)
ignored in all application areas are – mostly – not discussed below. However,
practical usage is not a sufficient reason for inclusion in a scientific textbook.
Two lines of argumentation are thinkable:

• Mathematical correctness

• Practical successfulness

Following the mathematical correctness argumentation methods have to be
justified by proofs. Attempts to prove signal processing methods and machine
learning methods can be encountered frequently in the literature. However, the
mathematical proof is not a sufficient justification for the application of some
method in media understanding. What counts is the ability of a method to
imitate human classification behavior as good as possible. The practical success-
fulness of a method is detected by statistical analysis and evaluation against
human behavior. Multimedia information retrieval is experimental engineering.
In consequence, the reader will find no proofs in this book. Instead, we describe
the conditions under which a particular method has proven successful experi-
mentally. In summary, our argumentation is – where such a choice can be made
– always statistical instead of mathematical. This point of view is in line with
the algorithmic design of the used notation.

1.3 Target Audiences

The primary audiences of this textbook are graduate students in computer sci-
ence with an interest in digital media analysis (see below for a more differenti-



1.3. TARGET AUDIENCES 11

ated list). The book was developed as a course book for a twelve-hour Bologna
course module with lectures and exercises on media understanding. In the com-
puter science curriculum, this module should follow introductory and advanced
courses on the individual areas of research, most importantly, pattern recogni-
tion, computer vision, image understanding, video analysis, audio analysis and
text information retrieval. The module provides additional material on these
subjects as well as on other subjects like medical informatics (bioinformation
processing, biosignal processing), computational intelligence (advanced and ex-
perimental machine learning methods) and visual computing (multimedia appli-
cations of media understanding such as augmented reality). Most importantly,
it clarifies communalities and differences of the methods employed in the indi-
vidual fields thus providing a workbench of tools for media understanding in less
well-known areas. In the more than ten years of teaching at his university the
author has frequently experienced that graduate students – after visiting the
obligatory courses – are very well able to apply media understanding methods
on audiovisual content with good results. They are, however, to a much lesser
degree capable to reflect the employed methods and therefore, almost unable to
develop the method set further. The media understanding module takes this
deficit on by the approach outlined above.

Requirements to the reader include undergraduate knowledge of linear al-
gebra, analysis, statistics (including optimization) and general computer engi-
neering (programming, data structures, etc.). Experience with the processing of
digital media is of benefit though not mandatory. Neither is prior knowledge of
one or more fields of multimedia information retrieval required.

In detail, this book is intended for the following groups of readers:

• Graduate students in computer science (visual computing, medical infor-
matics, computational intelligence, etc.)

• Audio experts (speech recognition, music classification, etc.)

• Bioinformation experts (e.g. gene alignment)

• Biosignal experts (EEG analysis, ECG analysis, etc.)

• Finance data analysts (e.g. stock analysis)

• Information retrieval experts (e.g. text recognition)

• Vision experts (image retrieval, video event classification, etc.)

Graduate students fall in one of two groups: those with prior knowledge
in one or more fields of media understanding and those without. For the first
group, the main advantage of the book lies in the introduction to the method set
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applied in related areas. Existing models are reviewed critically and potentials
can be uncovered. Likewise, new fields of application for existing knowledge
are opened at minimal effort. For the beginner, the book provides an overview
over the various aspects of multimedia information retrieval, an exhaustive list
of employed methods and a unified view on open problems that allow for critical
judgment of the value of this discipline. Students from a signal-oriented subject
(e.g. visual computing) hear about the learning-oriented side of the problem.
Students from learning-oriented subjects (e.g. computational intelligence) come
to know the details of applications and of signal-oriented problems. For both
groups seeing the other side should enable them to develop a fuller understanding
of their own domain. For example, why do populations of descriptions look the
way they look? Why do particular learning algorithms fail on particular types
of descriptions? Etc. This audience should benefit from the entire book.

Audio retrieval experts are another key audience of the book. Working with
audio requires excellent knowledge in signal processing and, at least since re-
cently, improved knowledge in machine learning. However, some methods are
very popular while others are literally unknown. Frequently, these other meth-
ods are accepted in related areas such as biosignal processing or visual analysis.
We suspect that the tradition of audio analysis (in particular, in such well-
investigated fields as speech recognition) has a stronger influence on method
choice than objective comparison of and selection from the available range of
methods. The book intends to show audio experts structural similarities to their
methodology in related fields. Many intriguing similarities do exist. The audio
expert does not have a far way to go in order to become a media understanding
expert.

The imagined bioinformation expert has excellent knowledge of similarity
measurement techniques, structural alignment and process optimization. Signal
processing plays little to no role in bioinformation processing. We see four major
benefits from reading this book for the bioinformation expert. Firstly, other
areas (in particular, text retrieval) know many related similarity measurement
methods that may also be applicable on bioinformation. Secondly, results from
psychological similarity research that are today already applied in the visual
analysis could as well be beneficial to the domain. Thirdly, machine learning
provides many more models than the Bayesian procedures usually employed for
sophisticated gene string matching. Such methods are, for example, used in
visual object recognition. Eventually, considering the length and complexity of
biodata it may pay off to summarize them – in a similar fashion as text – in
order to make them processable more easily. For all known species, the majority
of gene data are junk. Cleverly adapted signal processing could help to speed
up the analysis process.

Biosignal experts have a similar background as audio specialists – in the
signal processing domain. However, classification by machine learning plays a
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surprisingly small part in biosignal processing today. One frequently mentioned
argument is that computational classification is too error-prone and risky. There-
fore, the classification step is left to the user. This argumentation is, without
doubt, reasonable. Still, machine learning may play an important role in the pre-
processing of biosignal events (e.g. automated warnings of abnormal ECG data).
This book provides the biosignal expert with the knowledge required to make
the step from signal processing to automated classification as it is performed on
audio and visual media today.

Finance data analysts usually have at least a limited understanding of signal
processing though surprisingly few methods are automated in this discipline.
Data summaries such as peaks, holds, etc. are mostly generated by hand and
events are classified by looking at them. Clearly, such a proceeding opens the
door for overbearing subjectivity. Humans are highly gifted in arguing for some
theory while the objective value of it may be small. Automated procedures for
chart analysis that are based on pre-defined building blocks that are also used
in related areas should help to elevate the level of quality as well as the level of
seriousness in this discipline. Stock analysis experts should, in particular, ben-
efit from visual template matching models and from probabilistic classification
methods.

Information retrieval experts are mostly concerned with the processing and
understanding of text. Like in bioinformation analysis researchers focus on the
machine learning aspect. Sophisticated methods were developed for analysis on
the word, sentence and text level. On the other hand, signal processing aspects
are of little to no relevance in information retrieval today. Automatic summa-
rization is used, but mostly based on classification. We believe that text experts
could benefit from the ideas developed in audio and video summarization as well
as from the similarity models, for example, employed in video event classifica-
tion. Audio and video analysis originate partially in text information retrieval
but have matured to a degree where some of the results of both disciplines may
be useful inspiration to the original problem domain.

Eventually, vision experts (specialized in image analysis or video analysis) are
comparable to audio experts in their thorough knowledge of the signal processing
side as well as the machine learning side of multimedia information retrieval.
However, they usually know surprisingly little about what is going on outside
their domain (image/video, but certainly not audio) even though insights from
these areas could be of the highest relevance for their field. The major benefit of
this book to the visual expert is to see the other side of the wall, in particular,
how the same methods of signal processing are employed on audio and biosignal
data and how the same machine learning methods are employed on genes, text
and audio.

In conclusion, we provide a broad review of the methods employed in multi-
media information retrieval – hopefully – for the benefit of all groups of experts
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in the various domains of application. More details on the media under con-
siderations and their needs in terms of signal processing and machine learning
are given in the next chapter. The message of this section is that by reflecting
the state-of-the-art we endeavor to uncover potentials for improvement in media
understanding.

1.4 Overview Over the Book

We would like to close the introduction with an outline of the chapter structure
of all three parts of the book and recommendations of paths through it for the
groups of readers sketched above. Not all chapters are interesting for all target
audiences. However, we hope that the book contains substantial information for
each reader.

This textbook is structured in three parts. Each part covers a two-hour
lecture on media understanding. The second part is based on the first part. The
third part is based on the second part. For beginners, it is recommendable to
work through the first part before moving to the advanced chapters. Domain
experts may go directly to the more sophisticated topics. Each part is organized
according to the typical flow of information in media understanding applications.
In Chapter 3 we introduce this sequence of signal processing operations and
machine learning operations. Hence, the first chapters of each part are on media
properties and signal processing of digital media while the later chapters are on
machine learning of digital media descriptions.

The big picture of media understanding is only represented on the part level.
Chapters contain information on related methods, either on signal processing
or machine learning. Related methods are referred to as building blocks (e.g.
integral transformations, statistical filtering methods, probabilistic learning).
Building blocks emerge from the reflection process discussed above. The com-
mon notation supports the description process of building blocks. Where nec-
essary, cross-references between related building blocks are made. In particular,
Chapters 3, 11 and 21 reflect the overall structure of the media understanding
process and paint the big picture of data manipulation and information flow.

Of the remaining chapters of the first part, Chapter 2 discusses the properties
of the media types under consideration. Along the reflection of communalities
and differences of the media types, the notation for media objects is introduced.
Furthermore, visual examples of media objects are given and discussed.

Chapters 4 to 6 deal with fundamental signal processing operations employed
for the summarization of single-media data. The two initial chapters introduce
the most common and easy to comprehend methods used today on audio and
video. Audio analysis is discussed first, because the data type is the least com-
plex of those under consideration and a large number of signal processing meth-
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ods have been proposed. In the following visual chapter we will see that some
methods employed on visual data follow the same ideas as those employed on
audio. In the last chapter of the group signal processing operations employed on
non-audiovisual data are reviewed. We will see that only few genuine methods
emerge. Most ideas are shared with signal processing of audiovisual data.

On the passage from signal processing topics to machine learning topics
Chapter 7 introduces important concepts for the statistical transformation of
extracted media summaries. These methods follow two purposes: simplification
of the summaries and elimination of noise. We introduce the basic filtering con-
cepts in this chapter. Advanced methods are discussed in the second part in
Chapter 16.

The following Chapters 8 and 9 introduce the fundamental concepts of catego-
rization by machine learning. Theoretical models are reviewed, and simple con-
cepts are evaluated. In the second chapter of this group, we discuss probabilistic
methods for categorization. Not all of these models are easy to comprehend.
However, they constitute the foundation for a number of advanced methods and
must, therefore, be presented early. Furthermore, probabilistic categorization
methods can be implemented with limited effort which makes them suitable for
simple though well-performing media understanding applications.

The final chapter of the first part deals with the implementation of applica-
tions. Media understanding is an experimental discipline. All methods presented
in this book are suitable for application. This chapter explains how media un-
derstanding applications are built and tested.

The second part follows the structure of media understanding introduced in
the first part. Many methods introduced in this part are based on the concepts
introduced in the first part. Like the first part, the second comprises a two hour
media understanding lecture – here on advanced concepts.

In Chapter 11, the insights gained from the first part are critically reviewed,
and the big picture is revised and extended. This bigger picture comprises a more
detailed view on the machine learning process and a number of feedback loops
between the steps of the process. The bigger picture of media understanding
provides the foundation of the second part of the book.

Chapters 12 to 15 deal with signal processing issues. This time, the chapters
are not divided by media type but by purpose. Chapter 12 reviews transforms
that are, likewise, employed on audio, visual and biosignal content. The under-
lying convolution operations have already been introduced in the first part. This
chapter extends and reflects their understanding. The next chapter of the group
introduces signal summarization techniques that are based on integral trans-
forms. Such methods are, likewise, used in the audiovisual domain, biosignal
processing and even technical stock analysis. Chapter 14 introduces summariza-
tion methods that are employed on all data types. These methods appear at
first very heterogeneous but closer inspection shows that they share some prop-
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erties. The last chapter of the group deals with an aspect only present in video:
motion. This property emerges from the dimensionality of the underlying media
type. Since the resulting signal processing operations are partially unique we
put them all in one chapter.

Similarly to the first part, we proceed from signal processing to machine
learning by a chapter on information filtering. Chapter 16 introduces advanced
concepts of redundancy elimination and dynamic filtering processes.

The Chapters 17 to 20 deal with various advanced aspects and models of
machine learning. The first chapter of the group reviews the content of Chap-
ter 8 and introduces important concepts from human learning psychology. On
this foundation, the fundamental machine learning concepts are generalized. All
concepts and models required in the subsequent chapters are introduced in this
place. The two following chapters deal with practically usable information. So-
phisticated and powerful machine learning methods are introduced and their ap-
plication on media summaries is explained. Chapter 18 deals with categorization
by risk minimization. Chapter 19 introduces meta-processes for categorization.
We will encounter methods for clustering by separation as well as clustering by
hedging. In the process of discussion, we will review the potentials and limita-
tions of the methods. Eventually, Chapter 20 is dedicated to the evaluation of
the efficiency of the methods introduced in the prior chapters. This chapter is
based on the last chapter of the first part, but extends the set of methods by
some fundamental tools that are highly useful for practical application.

The third part is organized along the big picture of media understanding
like the first two parts, and it is designed to be one sophisticated lecture on
top of the advanced concepts. Still, one major difference to the two other parts
exists: Some of the chapters do not introduce methods intended for direct prac-
tical application. Rather, these chapters reflect the information of the earlier
chapters and extend it towards scientific frontiers of media understanding. This
part is intended for the media understanding researcher looking for inspiration
for future research. Nevertheless, some chapters also describe practical tools
for the enhancement of media understanding applications as well as techniques
alternative to those introduced in earlier chapters.

The leading Chapter 21 reflects the results gained from the first two parts
of the book. Building blocks of feature transformations are generalized and
extended, new building blocks of categorization methods are identified. The
next two Chapters 22 and 23 discuss media-related issues. The first chapter
introduces results from semiotics, media theory and related areas of research
that are potentially helpful in the media understanding process. This chapter
processes information that is soft in comparison to most other chapters. Still,
we believe that the philosophical domain provides a number of fruitful stimuli
for media understanding. In the second chapter, psychophysics and perception
are discussed and their influence on signal processing is outlined. Partially,
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psychoacoustic knowledge has already been employed in earlier chapters. This
chapter summarizes the results of this research discipline and discusses influences
on media understanding.

Chapters 24 and 25 attribute signal processing problems. Chapter 24 deals
with template matching, a group of operations equally important in all consid-
ered domains. Valuable methods are explained and abstracted into a general
model of template matching by crosscorrelation. The second chapter reflects so-
called semantic descriptions, i.e. signal summaries that are derived from other
summaries. The intention is to imitate the human cognition process that derives
advanced concepts from simpler ones and from sensual information. We discuss
the potentials and limits of semantic signal processing operations.

Chapter 26 is another information filtering chapter. This time, mostly the-
oretically relevant models are discussed and unified into a general model. One
exception of the highest practical value is the Kalman filter that is introduced
and critically reviewed.

The machine learning group of the second part comprises Chapters 27 to 29.
The first of these three chapters deals with theoretical models for the identifi-
cation of the boundaries of machine learning. Existing theories are compared
and general conclusions are drawn. The second chapter provides an overview
over the results of psychological research on human similarity perception. The
practical results of this research are summarized in Appendix B. We believe that
the insights gained from psychological research are highly beneficial for sophisti-
cated machine learning in media understanding. After all, media understanding
endeavors to imitate human behavior. The last chapter of the group follows this
line of argumentation and discusses advanced neural models for machine learn-
ing. Some of these models have practical relevance, since they can effectively be
implemented in computer systems.

Chapter 30 summarizes the most important results of all three parts and
makes them subject to a final reflection process. From the state-of-the-art con-
clusions on the near future of media understanding are drawn.

Before we conclude this chapter, we would like to sketch some paths through
this textbook for the before-mentioned audiences. Obviously, the first and sec-
ond part are of primary interest for the beginner. Chapters 3, 11 and 21 should
be beneficial for all target audiences. Likewise, should the three information
filtering chapters be of interest to all groups of readers. Furthermore, we recom-
mend reading the following chapters to the specific groups of readers:

• Audio expert : Chapters 6, 14 and 24 should provide interesting additional
knowledge on summarization methods. Chapters 22, 23 should be of gen-
eral interest to audio experts. Chapters 27, 28 and 29 should contain some
interesting novelties from the machine learning domain.

• Bioinformation expert : Experts from this audience usually have good
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knowledge in probabilistic machine learning. However, other algorithms
are often less well-known. We recommend Chapters 18, 19 and 29 from
the machine learning domain. Some aspects of signal processing may also
be of interest. We recommend Chapters 6, 14 and 24. Furthermore, Chap-
ters 22, 23, 19 and 28 should be of interest to this audience.

• Biosignal expert : Recommended are all chapters on machine learning from
all three parts, since this part of media understanding is often neglected
in biosignal processing. Furthermore, Chapters 22, 23 should be of general
interest. Chapters 14, 24 and 25 should provide interesting information on
advanced signal processing.

• Finance data analyst : Almost all chapters should be of interest to the
finance data analyst. In particular, we recommend the first part on funda-
mental media understanding. From the two latter parts Chapters 14, 18,
24 and 28 should be of special interest.

• Information retrieval expert : We consider the text retrieval expert firm in
all aspects of machine learning. However, some aspects of signal processing
may be of interest. We recommend Chapters 6, 14 and 24. Furthermore,
Chapters 22, 23, 19 and 28 should be of interest to this audience.

• Vision expert : This expert is in a similar situation as the audio expert.
We recommend Chapters 4, 24 and 25 from the signal processing domain.
Chapters 22, 23 should be of general interest. Chapters 19, 28 and 29 may
provide information not so well-known in this domain.

In summary, the three parts of this textbook guide the beginner from zero to
expert knowledge in the various domains of media understanding. Concepts and
procedures are introduced, reviewed, abstracted and generalized into building
blocks. Eventually, a workbench of methods is provided for the analysis and
design of media understanding systems. Exercises and additional material can
be found on the web.5

5Please visit atpress.info.



Chapter 2

Applications and Media
Types

Lists and discusses important applications of media understanding, characterizes
the fundamental media types, names and lists their major properties, compares
media types by these properties, provides a formal notation of media objects and
introduces the leading example.

2.1 Applications of Media Understanding

This chapter is dedicated to the media that constitute the foundation of all
media understanding applications. We start with an overview over important
applications, briefly discuss their components and arrive at the fundamental me-
dia types of media understanding. In the second section, the essential properties
of the media types are investigated. Media dimensions and bandwidth require-
ments1 are discussed. Then, the representation of media in the mathematical
system along with important operators is introduced. This introduction is con-
tinued in the next chapter. The last section introduces examples that lead the
methodological discussion throughout the book. Eventually, a simple media un-
derstanding process is used to compare the most general properties of the media
types.

Table 2.1 lists some important applications of media understanding along
with some characteristically employed media types, signal processing operations

1Here, generic for the size of a media event.
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and machine learning operations. The list should illustrate how diverse media
understanding is. It is astonishing that most of these applications share the same
methods. The list is not exhaustive nor are the listed methods. In fact, most
methods mentioned in the table have been employed on all the listed application
problems. Still, the selected methods are among the best-performing ones. It
is noteworthy that only digital media are given in the media column. This
selection follows the definition of media understanding in the previous chapter.
We do not consider this choice a limitation since today hardly any media signals
are captured, processed, broadcasted or stored analog any more. The quality
of digital sampling and redundancy elimination has arrived at a level where
any signal considered in media understanding can be represented digitally at
satisfactory quality.

Most applications should be self-explanatory. Some special applications are
concept recognition, copy detection, flow detection, P300 detection, query by
humming and unusual event detection. Concept recognition aims at the asso-
ciation of (mostly, visual) media with names, e.g. the association of animal
photographs with the name ’cat.’ Copy detection is important in image analy-
sis. Such applications try to identify the, for example, copyrighted original of a
given media sample. Flow detection is a classic application in the social sciences
and emerging in computer science. Here, the goal is to determine typical path
structures of moving humans. Flow analysis may be embedded in path plan-
ning or the psychological analysis of human behavior. P300 detection comes
from biosignal detection. It aims at the identification of peaks of brain activity
that usually emerge 300ms after an unusual stimulus has been presented in a
sequence of well-known stimuli. Query by humming is motivated by the desire
to retrieve the name of a piece of music by simply humming it. This problem
has turned out to be among the hardest audio understanding problems of the
last decade. Eventually, unusual event detection is, for example, employed in
video surveillance for the detection of emerging situations.

All applications operate on one or more of the following data types: audio,
image, video (sensual media), biosignals, stocks (artificial time series), text and
bioinformation. The latter two data types are, as we will see below, fundamen-
tally different from the others which makes their signal processing a different
task. Machine learning, however, is hardly different for text and bioinformation
from the other data types.

Before we continue with the analysis and differences of the media types a
few words are necessary on the signal processing methods and machine learning
methods listed in Table 2.1. All of these methods are described in this book,
the majority in the second part. The reason is simply that the best-performing
methods have a level of sophistication considerably higher than the methods
discussed in the first part of the book. However, the simpler methods are required
to understand the more sophisticated ones and in more than one case they
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Application Media Signal Processing Machine Learning
3D Model Retrieval 3D Model Samples Structural Alignment,

Metrics
3D Reconstruction Image, Video Interest Points Not required
Affect Recognition Video Templates Mixtures
Age Estimation Image, Video Spectral KNN, Metrics
Biological Categorization Taxonomies Not required Association Measures
Case-Based Reasoning Any Any Learning Machines
Concept Recognition Audiovisual Bag of Features SVM, Mixtures
Copy Detection Audiovisual Color, Interest Points Metrics
DNA Analysis Gene strings Samples Association Measures
Environmental Sound
Recognition Audio Loudness, Rhythm Mixtures
Event Detection Audiovisual Time-based, Color, Mixtures

Optical Flow
Face Identification Image, Video Color Metrics, KNN
Face Recognition Image, Video Bag of Features Mixtures
Film Analysis Video Texture, Shape, Metrics

Optical Flow
Flow Detection Video Optical Flow Averaging
Genre Classification Audio Pitch, Rhythm Clustering, SOM
Gesture Recognition Video Optical Flow Mixtures
Handwriting Recognition Image Interest Points KNN, SOM
Human Action Recognition Video Optical Flow Mixtures
Image Retrieval Image Color, Texture, Shape Metrics, Learning

Machines
Information Retrieval Text Terms Bayesian
Iris Recognition Image, Video Spectral Learning Machines
Language Processing Text Phonemes Markov Processes
Medical Image Retrieval Image, Video Interest Points Metrics
Music Retrieval Audio Pitch, Timbre Markov Processes
Number Plate Recognition Video Interest Points, Shape SVM, KNN
Optical Character
Recognition Image Interest Points, Shape SVM
P300 Detection Time series Peak Detection Metrics
Panorama Stitching Image, Video Color KNN
Person Identification Video Color, Interest Points Markov Processes
Porn/Violence Detection Audiovisual Spectral, Color, Learning Machines

Optical Flow
Query by Humming Audio Rhythm Learning Machines
Sex Classification Image, Video Templates SVM
Speaker Identification Audio Rhythm, Timbre KNN, SVM
Speech Recognition Audio Spectral, e.g. MFCC Markov Processes
Stock Analysis Time series Autocorrelation Metrics
Traffic Surveillance Video Optical Flow KNN
Unusual Event Detection Audiovisual Optical Flow Mixtures
Video Indexing Video Color, Optical Flow Clustering, SOM
Video Summarization Audiovisual Spectral, Color, KNN, Mixtures

Optical Flow
Video Surveillance Video Optical Flow Learning Machines

Table 2.1: Some Media Understanding Applications, their Media, typical Signal
Processing Methods and typical Machine Learning Methods.

perform not much worse than the best method available.
The media types determine to a large degree the methods that are employed

to solve a particular application problem. Figure 2.1 is an attempt to organize
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Figure 2.1: Media Types by Level of Sophistication.

the media types according to the level of sophistication of the methods that
are usually employed on them. The most sophisticated methods are employed
for the applications on audio, image and video data. In comparison, biosignal
processing applies the majority of methods for signal summarization that are also
employed on audio, but the machine learning operations used for computational
understanding of the signals are rather simple. For example, in the medical
domain media understanding is to a large degree left to the human specialist.
Of course, no computer can read an ECG graph as good as a trained doctor
but that is only true as long as the doctor looks at the ECG. Computer-based
template matching and monitoring could provide an additional level of security.

Text and bioinformation share the same level of sophistication with audio,
image and video in terms of machine learning. However, the signal processing
employed on these data is often very basic. In the text domain methods for
summarization usually work on a word-by-word basis while in bioinformation
processing, for example, junk DNA is recognized by start and stop codons. It
is one task of this book to argue for the transformation and application of es-
tablished signal processing operations in the text and bioinformation domains.
Eventually, stock data applications have seen the comparatively smallest level of
sophistication. It is quite obvious that more intelligent signal processing could
be performed on stock data than just sliding averages and regression. In the ma-
chine learning dimension, the arbitrariness of template matching with triangles,
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butterflies, etc. should be replaced by rigorous machine learning procedures that
apply objective criteria on the data. In summary, all the mentioned media types
and their associated applications should be investigated by elaborate media un-
derstanding procedures. This book is an attempt to move the state of science
towards the sophisticated end and to push the overall media understanding fron-
tier a bit.

Figure 2.2 goes one step further than the last figure and puts the sets of
methods employed on the different media types into context. The interpretation
is the one of a Venn diagram where the axes can – roughly – be associated with
signal processing (horizontal) and machine learning (vertical). Obviously, image
and video understanding share the majority of methods. Video understanding
extends image understanding by motion analysis that is impossible without tem-
poral information. Both visual areas share a large proportion of methods with
audio understanding. Common methods include, for example, the detection of
rhythmic patterns (called textures in the visual domain) and of peaks (interest
points in the visual domain). The machine learning procedures applied in both
areas are mostly the same.

Biosignals are located in the figure as a subset of audio understanding. We
are not aware of a fundamental method for signal processing that would be
applied on biosignals but not on audio. Minor differences such as the choice
of particular wavelet functions (see Chapter 12) do not count as fundamental.
In terms of machine learning, audio understanding is far advanced compared to
biosignal processing. Like on biosignals we consider the set of methods employed
on stock data a subset of what is applied on other time series. The number
of methods employed today is remarkably small considering, for example, the
amount of money often involved in decisions based on technical chart analysis.
Practically, we can see hardly any reason why not the majority of sophisticated
audio understanding methods should be applied on this type of data as well.

Text and bioinformation play a special role in this visualization. Text under-
standing shares the majority of machine learning methods with sensual media
understanding. However, some methods have been developed for text under-
standing that have not yet been successfully transferred to the other domains.
Examples include boolean retrieval (see Chapter 6 and the binary independence
model (see Chapter 9). Bioinformation understanding shares some methods
with the text domain (e.g. the Hamming distance) but as well with audio un-
derstanding (e.g. dynamic time warping). Most of these methods are explained
in Chapter 28.

Why have we chosen exactly these media types for a book on media under-
standing? Other media types mentioned in Table 2.1 are 3D model data and
taxonomies. The first is an example for graph data while the latter are examples
for structured data, a domain that also includes markup text. Another emerging
data type is 3D video. Why not these data types? To start with the last entry
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Figure 2.2: Media Types by Method Sets.

on the list, we have not included 3D video because it is not yet clear how this
data type will eventually be represented. If it will be provided as two channels
of video, we can deal with it in the same form as with audio, which is commonly
provided with multiple channels. If 3D video is provided as one video stream
with an accompanying stream of depth masks, it is crucial to have detailed in-
formation on the structure of these maps. Depth information would, obviously,
be very helpful for object detection. However, due to a lack of predictability this
topic has to be postponed until established standards are available.

Structured data can easily be represented by graphs. For 3D model data,
the graph is the natural representation, for taxonomies it is a straightforward
representation. Both data types are not investigated here because sophisticated
methods are available in the graph matching domain that are fundamentally
different from the signal processing and machine learning operations employed
in media understanding. Deterministic and efficient graph traversal, cutting and
matching procedures have been developed during the last half century. Hardly
any communalities exist between these methods and the mostly fuzzy methods
employed in media understanding. Therefore, these media types are not con-
sidered in this textbook. In conclusion, we believe that audio, bioinformation,
biosignals, images, stocks, text and video are the most important media types
for media understanding. In the next section, we investigate their most relevant
properties.

2.2 Properties of Digital Media

In this section, we discuss only those properties of the media under considera-
tion that are most relevant to media understanding applications. We employ a
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comparative approach, i.e. try to work out communalities and differences in the
structure of our media types. The reader should get a feeling for the scale of the
quantity of information that can be embedded in the media.

Sample Carrier
Medium Chns Dims Size Type Carrier Self-Similarity

Audio 1-6 1 216 Quantity Amplitude Sinusoid
Bioinfo 1 1 25 Symbol Amino Acids Gene Patterns
Biosignal 1-64 1 216 Quantity Electrical Potential Pseudo-Sinusoid
Image 1 2 224 Quantity Color Intensity Color Space
Stock 1-3 1 214 Quantity Money Pseudo-Gaussian
Text 1 1 27 Symbol Character Language Patterns
Video 1 3 224 Quantity Color Intensity Color Space

Table 2.2: Important Media Properties.

Table 2.2 lists fundamental media properties. For each media type, the nor-
mal number of channels (Chns), the number of dimensions (Dims), sample sizes
and several other properties are given. In the following paragraphs, we discuss
these characteristics. Most media types have exactly one channel (e.g. video).
Audio may provide one (mono), two (stereo) or up to six channels (e.g. five chan-
nels and one subwoofer). The information in these channels may partially be
redundant (closely located microphones) or completely independent (e.g. sepa-
ration of voices and instrumentation). Biosignal recording setups usually provide
twenty or more channels. The 64 channels in the table are just a typical prac-
tical hardware limit. Theoretically, hundreds of channels with individual brain,
muscle, eye, heart, etc. signals could be recorded from one person. Stock data
has at least one channel (open/close values) but may also provide daily maxima
and minima.

Time / Space Yes No
Yes Video Audio, Bioinfo, Stock
No Image Bioinfo, Text

Table 2.3: Media Dimensions.

Most media types provide one-dimensional channels. For Audio, biosignals
and stock data, the dimension is a time line. Bioinformation provides just a
nominal scale (see Chapter 7) without a temporal context. Text is somewhere
between these two types of dimensions. In words, the direction of writing hardly
matters, but becomes more relevant in the grammar of sentences and very im-
portant in paragraphs and documents. Images are two dimensional without a
temporal context while video provides images (frames) that are organized along
a third, temporal dimension. The major difference between images and video
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frames is their resolution, which is – despite high-definition television – dramati-
cally lower in video frames. Table 2.3 summarizes the classes of media according
to the presence of temporal and/or spatial dimensions.

Samples are the smallest units of media objects. In visual media, samples
are pixels, i.e. points with a defined color. In audio, samples are the amplitudes
of the signal which relate to the distortion of the membrane in a loudspeaker.
Similarly, biosignal samples are the potentials read from electrodes attached to
the body. Stock data is calculated from buying and selling operations at stock
exchanges. All these types of samples are quantities (referred to as carrier type
in the table), i.e. numbers from some range of numbers [a, b]. Bioinformation
and text samples, in contrast, are symbols, i.e. elements from some set {a..z}.

The difference between quantities and symbols is essential for the under-
standing of the media types. Media built from quantities are generally redun-
dant. That is, neighboring samples along one or more dimensions are correlated.
The type of correlation may be a sinusoid, Gaussian, or follow the laws of a
psychophysical color space. The self-similarity column in Table 2.2 names a few
possibilities. In any case, transitions are somehow smooth. In contrast, media
built from symbols are per se not redundant. Neighboring symbols need not be
correlated at all. An extreme example would be a random sequence of symbols.
Signal processing on such media would be meaningless. It is therefore relieving
that media like these do not exist in practice. Even in symbolic media streams
neighborhood has a meaning: for example, in words built from syllables, phrases
that follow a pre-defined grammar and particular sequences of amino acids that
define genes. The practical ubiquitousness of the concepts neighborhood and cor-
relation in symbolic media is one justification for us to include these data types
in this discussion. Correlation causes redundancy, and redundancy can be elim-
inated by signal processing for the benefit of better categorization by machine
learning.

Another yet unmentioned element of Table 2.2 is the carrier of the samples
that may range from amino acids over colors to money. The carrier is of highest
significance for the sample size. Colors, for example, require the description of
three-color elements (three stimuli theory, see Chapter 23 for details). Depending
on the type of audio, 8-16 bits may be required for adequate digital representa-
tion. Generally, sample sizes for quantities are chosen big enough for covering
all reasonably expectable values. Quite differently, symbolic carriers allow for
argumentation of the sample size. For example, text need not be represented by
letters. Phonemes, syllables and words would also be good carriers that would
require differently sized samples. In the bioinformation domain, chromosomes
could be represented on the DNA level or on the gene level. For this book,
we have chosen the representations that are the most common ones in today’s
science.

Before we continue with a rough estimation of bandwidth requirements of the
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media types, it appears beneficial to review the time dimension in the context
of digital media. Such media objects are distinguished by discrete dimensions,
i.e. the number of values between two points on any dimension is limited. Di-
mensions are, therefore, at most interval-scaled but often just ordinal-scaled.
Moreover, all dimensions, e.g. the spatial dimensions of images, have practical
limits. All of these properties are equally true for the time dimension. The only
difference is that there is no reasonable reversion of the time dimension. While,
for example, a mirrored image is still perceivable, reversed audio usually has
no meaning (except diabolic messages, of course). Reversed biosignals have no
meaning at all. That is, the time dimension has a natural origin at t = 0. In
all other cases, the origins are just by definition (e.g. the lower left corner of
an image). Since the natural origin of the time dimension is the only difference
we could identify and this difference is merely of minor importance in media
understanding we conclude to treat media types that have a time dimension like
all other data types and to apply the same method on the time dimension like
on all other dimensions one media type may have.

Medium Media Object Sample Frequency Size (bits)
Audio One Hour Audio CD 44100 Hz 2.1013

Bioinfo Human Genome – 1.1011

Biosignal One Hour EEG 20 channels, 10 kHz 5.1013

Image Portrait Photo 600 dpi 6.1012

Stock One Year Chart 3 values per day 2.107

Text This Book – 3.108

Video On Hour PAL Video 720x576 px, 25 fps 6.1017

Table 2.4: Media Examples.

So far, we have avoided the problem of bandwidth requirements of different
media types. The reason is that the bandwidth requirements are usually com-
puted from sample size and sampling frequency. The latter attribute, however,
is not applicable to all media types under consideration. Rather, Table 2.4 lists
a few typical examples of media objects together with their size. Where rele-
vant, the sampling frequency is given as well. For the sake of easy comparison,
where possible, examples of one hour length are given. As can be seen from
the table, video has by far the highest bandwidth requirements. Audio, image,
biosignals and bioinformation form a relatively homogeneous group a few orders
of magnitude behind video. However, observe that audio, image and biosignals
use quantities as samples while bioinformation uses symbols. Since in the lat-
ter case the level of redundancy is significantly smaller (see above), the amount
of information present in bioinformation is – on average – likely to be much
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higher than in the two other media types. Hence, performance issues play an
equally important role in bioinformation processing as in video processing. Text
data and stock data trail behind the other media types. Therefore, processing
should be much easier in terms of performance but this gain is paid with a lack
of information. Both data types are basically free of noise (except a few typos
or a false notation from time to time), but they provide only little input for
sophisticated media understanding. This problem is, in particular, evident in
stock data where the complex conclusions of technical chart analysis can hardly
be justified by available input data. In summary, most media types under con-
sideration have comparable bandwidth requirements. In the top group (video,
bioinformation, etc.) performance issues are of high relevance due to the high
bandwidth requirements.

The discussed media properties are only a few important ones. Many more do
exist for the individual data types. Since we cannot cover all aspects of the seven
media types under consideration here, we refer the interested reader to relevant
literature. Audio, image and video properties are, for example, discussed in
[298], [129], [391]. Biosignals and bioinformation are covered in [331], [225].
Eventually, text properties and stock properties are discussed in [262], [185].
Besides the named ones many other excellent sources do exist.

2.3 Media Description

This section provides the mathematical notation used for media types, media
objects and operators employed on media objects. We deal with the following
media types: audio, biosignal, bioinformation, image, stock, text and video. In
order to be able to treat all media types in the same way we have to cover the
different numbers of dimensions, the variable numbers of channels, the varying
sample types and the varying sample sizes.

Throughout this textbook, all media types are represented as arrarys of
media samples organized by locations. For example, the general media type O
is defined as:

O = [sl|s ∈ S ∧ l ∈ Ld] (2.1)

where the sl are samples from a set S and l is a bound location variable from
set L which has d dimensions. The set S contains all numerical values and all
alphanumerical symbols that may be required in one of the media types under
consideration. That is, we do not define colors as three- or two-dimensional
spaces of color channels but as unique numbers that identify unique colors. This
is a flexible approach of gathering the various ways of color representation under
one umbrella. It is sufficient for media understanding applications.
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The locations set L is numeric and contains all possible indexes that may be
required in any of the media types. All media types are isomorph to the general
media type O. Where necessary, they are referenced as Oname. Please note that
we do not provide a strong type system. The definition of the sample set allows
for the expression of meaningless media types. We consider this shortcoming
minor in comparison to the gain of understandability of the notation due to
simplicity. Eventually, we have chosen the array as the data type over the –
in mathematics more common – set, because it stresses the organization of the
samples in the media objects. In fact, in all media types under consideration, the
location (below, referred to as context) of a sample is crucial for its meaning. Sets
are not per se ordered. A second advantage of the array is the straightforward
implementation in computer programs. Media understanding is not a theoretical
undertaking but always ends in practical implementation. Arrays are easy to
implement in any imperative programming language.

The location mechanism is crucial for our media concept. To start with, the
locations set L is just a container for all locations that may occur on any of the
dimensions a media object may have. For all media types under consideration,
the set N+ is a sufficient locations set. For locations relative to an origin we
need N− as well. The dimensionality d equals for each media type the number
of dimensions given in Table 2.2. If we deal with a media object o ∈ O we assume
implicitly that the dimensionality of the location vector employed on o equals
the number of dimensions given above. Therefore, locations are not per se com-
parable between media types but this irrelevant fact (one media understanding
application deals with one media type) remains hidden in the notation. Typical
locations are points Lpoint (image, video), times Ltime (audio, biosignal, stock)
and positions Lpos (bioinformation, text).

We would like to close this section with the definition of a few functions on
media objects. The most important is the neighborhood operator y = θ(o, l, ε)
that cuts a neighborhood ε around location l from media object o and returns it
as media object y (isomorph to o). Neighborhoods are highly relevant in many
areas of media understanding. The neighborhood is defined by a set of locations
relative to l: ε ∈ {li}. Table A.2 in the appendix defines a few frequently used
neighborhoods, of which Lmoore is the most important one.

Other frequently used functions include dims(o), size(o) and cut(o, lstart, lend).
The first function returns a scalar value with the number of dimensions of the
media object. The function can, likewise, be applied on location objects. The
second function returns the actual size of the media object. The last function
cuts a media object out of object o that starts and ends at the given locations.
By this mechanism, arbitrary chunks of media information can be retrieved
including the elimination of undesired dimensions. However, the cut function
cannot interpolate or extrapolate media information. For this purpose, we use
convolution over an appropriate kernel as will be explained in the second part
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of the book.
In conclusion, we represent media objects as arrays of samples over locations.

The notation introduced in this chapter will be extended and refined in the
following chapters, in particular, the next one. For a complete overview over
the mathematical apparatus which we allow ourselves for media understanding,
please see Appendix A.

2.4 Media Examples

The last section of this chapter serves two purposes. First, we introduce the
leading example of the entire book. Where possible, the methods employed
in media understanding will be explained with the help of the leading example.
Secondly, we use the leading example to sensibilize the reader on the fundamental
differences of the considered media types. The results of this sensibilization will
provide a natural transition to the next chapter.

Headline

Anchorman
Stock graph

Channel

TimeNews

Figure 2.3: A typical Business Newscast ( c© CNBC ).

Our leading example is understanding the content of a typical business news-
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cast. Figure 2.3 displays one frame of a EMEA CNBC newscast.2 This type of
content contains video information of the anchor person and of featured events,
image information on business data, including stock charts, text information
on recent events, stock values, headlines, logos, time information, faces, jingles,
sometimes music, etc. In summary, this type of content covers video, audio,
image, text and stock data. Furthermore, biosignal events such as a rapid ECG
can be anticipated from the news contents.

We will use this type of content to illustrate the methods for signal processing
and categorization discussed in the remaining chapters. In total, we use twenty
keyframes from one newscast of ten minutes of CNBC television. The keyframe
content ranges from anchor person shots to chart analysis shots, live discussion
of recent events, a CNBC jingle and advertisements. On this material, we apply
methods for video and audio understanding, image understanding, text and stock
analysis. Additional material on biosignals is provided from experiments of the
author with an EEG brain computer interface, ECG and pulse sensors as well
as a skin resistance sensor. The sources of bioinformation are cited where used.

In the remainder of this chapter, we investigate properties of the media types
related to the leading example. Figure 2.4 depicts a few waveforms as they might
appear in the leading example. The horizontal dimension stands for location
(image) or time (other signals). The vertical dimension depends on the type
of signal: amplitudes (music, speech), values (stock), potentials (EEG, ECG)
and grey level (image). All signals have been normalized (see Chapter 7) to the
same range of values [−1, 1], therefore, absolute magnitudes have no particular
meaning.

The signals have been taken from the following sources: The image data
represents the one line of Figure 2.3 that goes through the nose tip of the anchor
person. ECG and EEG data are from a (hopefully) healthy but tired person –
the author. The stock values given are not sampled from real data but artificially
generated from a Wiener process (see Chapter 16) that looks exactly like a typical
stock curve. The speech sample comes from a free German audio book where a
male speaker narrates Cinderella. Eventually, the music sample has been taken
from the first set of Beethoven’s ninth symphony. It is therefore instrumental.

Before we dive into the analysis of the particulars of these signals a few
comments have to be made. Firstly, it is important to note that an equal number
of samples (400) is given for each signal in Figure 2.4. In consequence, some
signals are temporally stretched in comparison to others. For example, while
the stock chart shows the development of over one year, the speech sample
represents only 25ms – hardly enough time to express one phoneme. The music
wave represents even less time: 10ms – one brief sound of the orchestra.

2With friendly permission of EMEA CNBC, 10 Fleet Place, London.
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Figure 2.4: Typical Waveforms in Media Understanding.
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Secondly, all the given media types use quantities as samples. We do not
show bioinformation or text information. The reason is that symbolic infor-
mation can only arbitrarily be organized on an interval scale (see above). In
a diagram of a curve, intervals determine the difference between neighboring
samples. Therefore, every curve resulting from some ordering of the symbols
would be arbitrary and equally artificial/natural as any other ordering. For this
reason, we excluded bioinformation and text from Figure 2.4.

The six signals visualized in the figure have communalities and differences
that origin from individual characteristics. For example, the image signal is
distinguished by abrupt steps in the signal. These steps (professionally, referred
to as edges) represent sudden changes in the grey level. An edge appears at the
border of bright and dark objects but also at line breaks. Such edges cannot be
perceived in the other data types.

The ECG signal is distinguished by sudden peaks that interrupt the gentle
flow of the signals. Such peaks are not present in the EEG signal. The most
notable difference between an edge and a peak is that the amplitude of the signal
returns to the level before the phenomenon in the case of peaks while in the case
of edges, a new level is established. Another difference between ECG and image
data is that the ECG signal is composed of a recurring pattern (stimulation,
contraction and relaxation of the heart muscle) while the image signal has no
obvious pattern.

A third notable property is the similarity of a signal to a pure sine wave.
The EEG alpha wave shows a nice sinus-like function. This type of EEG signal
can be captured from people that are awake but tired. If the eyes are closed
the amplitude becomes bigger, if the eyes are open, the amplitude becomes
smaller. In comparison, the speech signal shows a similar sine wave but with
much higher frequency. The music signal is substantially more complex. The
reason is the relative simplicity of the human sound creation tools in contrast
to the sophisticated possibilities of an orchestra. Orchestral music has a much
more complex overtone structure that destroys the sinusoid pattern.

One further, practically relevant aspect of the depicted signals is the level of
noise present in each media type. Stock data will usually contain no noise while
an EEG can easily contain 99% noise in contrast to 1% information. The reason
is the relatively large size of the used electrodes in comparison to the small size
of neurons and the high packing density of the human brain. In between these
extremes, we find image data and ECG with little noise and the audio signals.
For the latter the noise level depends on the quality of the recording devices and
the noise environment of the recording. However, for all data types except EEG,
the noise level will be rather small in comparison to the level of information.
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Now, knowing the individual properties of the signals and being able to
estimate to which degree they origin from the real signal and to which from noise,
is it possible to express the overall similarity of the fundamental media types?
The answer to this question requires the definition of signal properties (so-called
features) and the categorization of the media objects – as representatives for
their media types – along these features. Some reasonable features of signals
could be:

• Smoothness of the signal

• Periodicity of the signal

• Fundamental frequency

• Balance of the signal

These are just examples. Many features more do exist. If we define smooth-
ness in the sense of mathematical analysis, we can categorize (or: classify, divide,
discriminate, etc.) the six signals of Figure 2.4 into three groups: speech, EEG
(very smooth); music, ECG (relatively smooth); stock, image (not smooth).

Concerning the periodicity we have to judge whether or not the signals have
a rhythm, a recurring pattern that may be as simple as a sine wave but also
as complex as an ECG pattern. If we classify the examples by this criterion,
we arrive again at three groups: ECG (highly periodic); speech, EEG (quite
periodic); music, stock, image (not periodic).

The fundamental frequency is an important feature in audio and biosignal
understanding. One way of measuring the fundamental frequency is to count the
number of zero crossings of a signal. If we do that (naively) for our examples, we
receive an ordering from stock (no fundamental frequency), image, ECG, music,
EEG to speech (high fundamental frequency). However, this ordering is only
partially correct. For complete correctness, the counting of the zero crossings
would have to be performed on media chunks of equal length in terms of time
– not samples! Then, for example, music should have a higher fundamental
frequency than speech.

The last feature of the list is the balance of the signal. Let us understand a
balanced signal as one that creates an equal fraction of the integral below the
horizontal axis as above. This feature is closely related to the periodicity (though
not completely the same). Categorized by balance our six examples form three
clusters: speech, EEG (highly balanced); music, ECG (rather balanced); stock,
image (not balanced).

In summary, we see that media types as different as speech and ECG, music
and EEG, stock and image data share some fundamental properties. On the
other side, music and speech, though both from the audio domain, are not as
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similar as one would expect. Knowing these similarities and differences of media
types and media objects is what matters in multimedia information retrieval.
The features of a particular media set determines the choice of potentially suc-
cessful signal processing operations and machine learning methods. It is one
major goal of this book to convey an understanding for this connection of media
properties and method selection.

The last investigation of this section is perfectly in line with this goal. We
endeavor to express the overall similarity of the media types discussed above
in numbers ranging from 0 (no similarity) to 100 (identity). For this purpose,
we apply a so-called unitary transform (the Fourier transform, see Chapter 12)
on the depicted signals, select a few of the resulting numbers as representative
media properties (features) and measure their similarity as the distance between
them. We employ the L1 distance (or: Manhattan metric, city block distance)
which measures the dissimilarity of two feature vectors x, y (each consisting of
the N numbers created by the Fourier transform and representing one signal of
the figure) as d(x, y) =

∑
i |xi−yi|
N . Eventually, we normalize all distance values

to [0, 100]. Table 2.5 shows the results.

Type Music Speech Stock ECG EEG α Visual
Music 100 34 42 45 42 21
Speech 100 43 46 44 0
Stock 100 51 55 11
ECG 100 50 14
EEG α 100 5
Image 100

Table 2.5: Similarity of Media Types.

Of course, every signal is 100% self-similar. Further outstanding results are
that speech and image are the most dissimilar types of signals. EEG comes
out closest to the average of all signals. The dissimilarity to all other signals is
around 50%. ECG, stock, speech and music signals follow in this order. The most
characteristic signal is the image signal – maybe due to the existence of edges
– which shows only a minor similarity to the music signal. This quantitative
analysis can be seen as a summarization of the qualitative considerations on the
four fundamental features listed above.

The major benefit of the last investigation is that it shows how multime-
dia information retrieval works. We start with some set of media objects that
belong to the same or at least comparable media types. In the first step (sig-
nal processing), the media objects are summarized by feature transformations
(here, Fourier transform and quantization to a few numbers) into feature vectors
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(or: descriptions). One description represents one media object. In the second
step (machine learning), the media set is organized into groups by some similar-
ity measurement operation applied on the features (here: Manhattan metric).
This general workflow of multimedia information retrieval will be formalized and
discussed in the next chapter.



Chapter 3

The Big Picture of Media
Understanding

Introduces the components of media understanding, sets them into context and
discusses them, provides a formalism for their description and illustrates the en-
tire process in a number of practical examples.

3.1 Introduction

In the last section of the preceding chapter we have introduced several concepts
for measuring the general similarity of media objects. This model is generalized
into the big picture of media understanding in this chapter. We discuss the
flow of information, analyze the properties of the building blocks, formalize
them mathematically and give a number of examples for multimedia information
retrieval applications that follow the big picture.

So far, we used very general terms to describe the functionality of multimedia
information retrieval. Signal processing is employed for the summarization of
media objects. Machine learning is employed for the categorization of summaries
into distinct classes that have a meaning on a semantic level sophisticated enough
for human understanding. In the example in Section 2.4 we introduced more
terms that describe specifically what types of signal processing and what types of
machine learning are applied in media understanding. These terms are arranged
into the big picture of media understanding in Figure 3.1.

In the figure, feature extraction stands for the signal processing component
of multimedia information retrieval. This process extracts summaries from ar-
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Medium

Feature
extraction

Description

Categorization

Information
filtering

Class

Photos

Color Histogram

Dominant Colors

Outdoor?

Yes/No

Figure 3.1: Big Picture of Media Understanding.

bitrary media content. Summaries are frequently called descriptions or features.
The latter term is, in particular, common in computer vision. However, we prefer
description over feature since this term has a more general meaning and – as data
resulting from a transformation process – cannot be confused with the process of
feature extraction. Information filtering is another type of signal processing that
is part of the media understanding process. As depicted, information filtering
executes a transformation on the description. The term categorization stands
for the machine learning aspect of multimedia information retrieval. Catego-
rization transforms a description into a class label. In most areas of research
subsumed here as media understanding classification is more common than cat-
egorization – the latter being a term originating from psychological research
of human similarity assessment. We consider categorization more general than
classification. Throughout this textbook we employ the term categorization for
the process of transformation of a description into a class. Individual methods
are – in line with computer science practice – called classifiers. In summary,
the two processes feature extraction and categorization transform media content
into a descriptions and, eventually, a class label. Alongside, information filtering
transforms the extracted descriptions into more efficient ones.

The right column of Figure 3.1 gives an example of a visual media understand-
ing application. We presume that the given media objects are images (media
type). Our goal is to categorize them into outdoor photos and indoor photos.
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This end may be the first step in a taxonomic organization process. Outdoor
photos could be further categorized by the season, daytime, etc. For the cate-
gorization outdoor/indoor we employ a simple feature extraction method called
color histogram. This method iterates over all pixels of an image, categorizes
each point into one basic color class (e.g. red, green, blue, etc.) and counts for
each basic color the number of pixels in the entire image that belong to it. The
result is a histogram where the colors constitute the nominal axis of independent
variables and the counts of pixels are the dependent variables. Color histograms
are frequently used descriptions in image and video understanding.

Before the categorization is performed, the descriptions are filtered. We se-
lect only the three dominant basic colors (those which have the most pixels
associated) as representative descriptions of each image. The eventual catego-
rization uses a simple decision tree as classifier. If green and blue are among
the three dominant colors we consider an image as outdoor and associate a class
label ’1’ otherwise ’0’.

The reasoning behind this example is that green is the typical color of plants
while the sky is blue. Both of them should be visible outdoors but not indoors.
However, the experienced reader will be aware that this model will perform well
often – but not always. In practice, situations not foreseen by the experimenter
emerge that require adaptation and refinement of the employed feature extrac-
tion and categorization methods. However, the big picture remains the same.
Media retrieval is an iterative process of feature extraction and categorization.

Below, we investigate the information compression aspect of the big picture as
well as, in the next section, all steps and results of the process in detail. For now,
it is worth noting that this simple model is sufficiently general to describe the
concept of media understanding independent of the type of media and the type
of application. Together with the general mathematical formalism developed
for media representation (last chapter) and processing steps (this chapter) the
big picture provides a flexible tool for the resolution of multimedia information
retrieval problems.

Due to its importance we use the big picture also as the organizing principle of
the three parts of this book. Each part starts with chapters on media properties
and/or feature extraction. Then follows one chapter on information filtering
in each part. The remaining chapters of each part deal with categorization
problems and solutions.

The big picture is a generalization of the multimedia information retrieval
process. As most generalizations it is also a simplification. In the remaining
chapters of the first part the simple model is sufficient to set all described meth-
ods into context. In Chapter 11, however, we will extend the big picture by
properties essential to sophisticated media understanding. Until then, we con-
sider only the following three aspects too important for being neglected in the
simple model.



40 CHAPTER 3. THE BIG PICTURE OF MEDIA UNDERSTANDING

• Querying situation

• Feedback loops

• Information filtering

The typical querying situation in media understanding comprises a query
and a media database. The query may be an element of the media database
or not. In the latter case it is usually provided by the user. Essentially, the
query may be one media object, a group of media objects (so-called query by
example approach), a coarse representation of a media object (query by sketch)
or some form of description (for example, query by text in text retrieval). Single
querying objects are usually considered positive examples for the query. If a
group is provided it is common to label each element of the group as a positive or
negative example of the query. Here, positive example means that the multimedia
information retrieval application should identify media objects similar to the
query object. The application of groups of query objects can be done in various
ways that are described in the categorization chapters of this book.

The typical flow of querying requires that in the first step, feature extraction
has to be performed on the query object(s). The feature extraction on the me-
dia objects in the database can be performed offline. The general performance
problem of media understanding (see Chapter 1) is, therefore, mostly a catego-
rization – not a feature extraction problem. In the second step categorization is
performed in one of two ways: The first option is to derive the class label of a
query object from the description and to select media objects from the database
that belong to the same or a similar class. The second option is to compare
the descriptions gained from the query object(s) to those of the media database.
Matches can be based on global (entire descriptions similar) or local (parts of
descriptions similar) level. Eventually, a result set with at least one most sim-
ilar match is presented to the user. Based on the result set the multimedia
information retrieval process can be refined by consecutive queries.

The last sentence already implies the existence of feedback loops in media
understanding. In fact, feedback is of highest importance for the querying pro-
cess. Feedback may be provided by the user or the implementer of the media
understanding system or by the system itself. If provided by the user, feedback
is usually given in the form ’These objects in the result set suits the query.
These do not.’ Such relevance feedback is employed for iterative refinement of
the query. If feedback is provided by the experimenter then it is usually called
ground truth, i.e. a set of media objects associated with human-rated class la-
bels. Ground truth is of highest significance in classifier training, as we will see
in the first part of the book.

Eventually, the system itself may provide feedback on many levels. In fact,
typical media understanding is an iterative process of media understanding cy-
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cles. In the example above we employed a first media understanding cycle for
the categorization of individual pixels. These classes were exploited for a second
iteration in which we categorized media objects by dominant colors. This is
a simple example. In state-of-the-art media understanding applications many
more feedback loops are utilized. Media understanding may first be applied on
individual media channels of media objects (e.g. audio and frames of video ob-
jects), divided into chunks of data, aggregated temporally and spatially and so
on.

One particularly important feedback loop is the initial transgression from
quantitative to qualitative categorization. Quantitative categorization is the al-
most inevitable first step of media understanding. Descriptions derived from
media content are mostly quantities – like the samples of quantitative media
types. In the first iteration of categorization these quantities are transformed
into class labels, i.e. symbols. In the example above, we transformed dominant
colors (quantities) into an outdoor/indoor (qualities) categorization. Further
media understanding iterations could employ the qualitative descriptions in or-
der to categorize outdoor photos, as mentioned above, by season and daytime.
Using class labels as descriptions for the purpose of increasing the interpretability
of the output is called semantic enrichment in media understanding. Obviously,
the transgression from quantitative to qualitative categorization is irrelevant for
symbolic media types such as text and bioinformation but, of course, media
understanding on these data types may have feedback loops as well.

Medium

Feature
extraction

Description

Categorization

Information
filtering

Class

O ∈ {0, 1}x

F ∈ Ry<<x

C ∈ N

Figure 3.2: Information Filtering by Media Understanding.
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The last aspect of the big picture to be mentioned here is the information
filtering effect of feature transformation and categorization. Figure 3.2 illus-
trates the effect. Media objects are large blocks of binary data. In comparison,
descriptions are – in the worst case – vectors of real numbers with significantly
lower dimensionality. Real numbers are, in fact, only required for quantitative
descriptions. Classes can be expressed in N. Hence, the qualitative description
reduces the amount of information even further while enriching the semantic
meaning. Eventually, media understanding results in one class label per media
object (in a simple case, ’similar to the query’ or ’not similar’). That is, the
large block of media content is reduced to one number. However, this number
is semantically highly loaded. The class label is only meaningful with respect to
the given query. In conclusion, media understanding is an iterative process of
semantic enrichment by information filtering and categorization that transforms
the general content of a media object into a specific answer meaningful only to
a particular query.

3.2 Elements of Media Understanding

In the last section of this chapter we will give more examples of particular media
understanding applications that are based on the big picture. This section,
however, is dedicated to the elements of the big picture. We discuss the terms of
Figure 3.1 generally and with respect to the fundamental media understanding
problems listed in Chapter 1.

Feature transformations reduce the media content to uniform descriptions.
From visual material, color information, texture information and the shapes
of objects can be extracted. From video, additionally, motion can be extracted.
Text is typically reduced to the principal parts of the most relevant words. From
biosignals and audio energy, peaks and rhythms can be extracted. Eventually,
from bioinformation, for example, fundamental genes can be extracted. A good
feature transformation will try to anticipate the categorization process. That
is, the descriptions of media objects belonging to the same class will be very
similar while the descriptions of media objects belonging to different classes will
be significantly different. Such a feature is called discriminative.

We will discuss the qualities of good feature transformations in more detail
in later chapters. However, Figures 3.3 and 3.4 illustrate the difference between
discriminative feature transformations and not discriminative ones. In the latter
case, the descriptions of a given media database are uniformly distributed over
description space. In the first case, however, areas with higher density (clus-
ters) are separated from areas with lower density. Discrimination requires the
existence of such a structure as a necessary condition. However, the structure
is not a sufficient condition in all cases. If members of different classes were
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Figure 3.3: Description of Musical Objects by two good Feature Transforma-
tions.

Variance of Amplitude
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Figure 3.4: Description of Musical Objects by two bad Feature Transformations.

represented to the same extent in all clusters, the descriptions would be as non-
discriminative as in the case of Figure 3.4 – but this is in practice seldom the
case.

The implementation of feature transformations touches the fundamental prob-
lems of polysemy, curse of dimensionality and handling of noise, distortions and
missing data. Polysemy is actually reduced or eliminated by the feature trans-
formation process because feature transformation is an interpretation step that
transforms a perceivable media event into an abstract numeric representation.
The abstract representation does not allow sensual perception and, therefore, re-
duces the possibility of misinterpretation to the statistical level of membership
in one or another densely populated area of data points. The curse of dimen-
sionality, on the other hand, is mainly created by the feature transformation
process. As we will see in the forthcoming chapters, feature transformations
employ recurring building blocks with one or a few parameters each and a few
reasonable values per parameter. If a handful of building blocks are merged into
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one feature transformation, the number of possible parameterizations grows ex-
ponentially. Calling this property a curse is very appropriate. A lot of work of
feature transformation design flows into the elimination (e.g. by constraints) of
extrinsic parameters. Eventually, noise, distortions and missing data are prob-
lematic because if not handled intelligently by the feature transformation, these
unwanted signal components would be transformed into legitimate description
components. Since most descriptions are abstract, noise can only be detected
statistically and, therefore, within hardly satisfactory limits. In summary, these
three fundamental problems influence the feature transformation process and
have to be considered in the media understanding design process.

The feature transformation process creates a description, i.e. a vector of
numbers. If extracted from quantitative samples these numbers will be real val-
ues. If extracted from symbolic samples or iteratively from class labels, the
numbers will be cardinal numbers or even binary predicates. The vector struc-
ture is important for categorization. In the heart, most categorization methods
require the comparison of pairs of descriptions. One dimension in the descrip-
tion vector represents one property of the media object. The vector format is
very convenient in order to guarantee that in the categorization process dimen-
sions of one description are always compared to the appropriate dimension of
the other description. It is, therefore, common to transform matrix data and
multi-dimensional output of feature transformations to a vector format. Vector
descriptions created by multiple feature transformations can simply be merged
by concatenation. However, it is important to note that descriptions have to
be made independent of media size in order to guarantee comparability. This is
often achieved by estimating the maximal descriptor size and filling up positions
unused by smaller media with zero values. Details of description merging and
normalization will be discussed in Chapter 7.

Categorization transforms description vectors into class labels. Depending
on the querying principle the categorization process is either performed example-
based or rule-based. In the first case, the classifier derives the class label of some
media object by its similarity to examples of the classes. In the second case, the
classifier employs some inference rule on the description elements. These two
fundamental approaches are not as different as they may seem. The rule-based
approach requires a learning step prior to application that usually implements
a functionality very similar to the example-based approach. In the chapters on
categorization we will endeavor to introduce the majority of categorization prin-
ciples employed in machine learning. Reviewing these principles in the second
part of the book will show that only a handful of principles is recombined in the
– at first sight highly different – approaches.

The core functionality of a classifier is to group similar descriptions and asso-
ciate groups with a class label. The quality of the grouping stands and falls with
the quality of the descriptions provided by feature extraction. Properly defined
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assumptions can, to some degree, reverse the negative effect of a bad feature
transformation. However, no classifier is able to classify a space of uniformly
distributed descriptions.

Actually, no classifier should be able to categorize such a space correctly.
A classifier that can be trained to discriminate even such a space more or less
correctly into classes would be called overfitting. That is, its learning procedure
would adapt too far to the training data. This statement may appear surprising.
Why should precise adaption to the training data be a problem? The problem
is that no machine learning method employed for categorization can be trained
on all descriptions that may appear in practical application. Due to constraints
in time and availability of training data the training is always limited to a sub-
sample of the space of possible media objects. That implies, statistically, the
danger that the distribution of descriptions in the training data is not the same
as in the, unknown, media space. A classifier that adapts perfectly to the char-
acteristics of training data that does not represent the media space correctly
would, therefore, fail in practical application. Since the problem of inappro-
priate representation of media space by the training data exists in most media
understanding applications, overfitting has to be cured by a proper scheme.

This scheme is the implementation of a desired level of inflexibility of the
classifier (frequently, referred to as structural risk minimization, see Chapter
18). Overfitting can be avoided if limiting constraints are added to the model of
the classifier. In consequence, the training data can only be learnt to a certain
degree. The benefit of this approach is that such a classifier is less prone to
overfitting. On the other hand, the classifier is not able to learn a sophisticated
class structure perfectly. The practical implementation of categorization meth-
ods is very much about identifying the optimal trade-off between model flexibility
and overfitting avoidance. This trade-off has to be identified for every media
understanding application anew. It is, therefore, a goal of this book to focus
in the description of categorization methods on similarities and differences of
the existing approaches in order to make the reader understand which method
should be applied when.

Categorization has to deal with the following fundamental media understand-
ing problems: sematic gap, incomplete ground truth and performance. The sec-
ond problem refers to the before-mentioned problem of selecting an appropriate
sample for training. The solution has been sketched in the last paragraph. The
semantic gap problem [322] is practically of highest importance. A media under-
standing application that is not able to capture the semantic concepts provided
by a non-expert user will cause frustration. In consequence, it will not be used.
There is currently no full remedy against the semantic gap problem. The most
promising approach is to use as many feedback loops as possible, re-use the cat-
egorizations learnt in earlier iterations and to put the human in the loop, i.e.
use semantic feedback of the user (e.g. ’this one is good’) for refining the fea-
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ture transformation and categorization process. Throughout this book we will
emphasize promising methods for reducing the semantic gap problem.

Above we judged the performance problem as of only minor relevance to the
feature extraction process. Our argument was that, depending on the querying
paradigm, only one or a few examples have to be transformed into descriptions
at runtime. All other objects of the media database can be transformed offline.
This argument is not valid for the categorization process. The categorization rule
has to be as simple as possible since it has to be employed at runtime on any
media object in the database (exceptions neglected for the sake of simplicity).
However, a simple categorization process will not be as successful as a complex
one. This is another trade-off problem. Depending on the media understanding
problem an appropriate categorization method has to be designed that is fast
enough for quick response times and sophisticated enough for minimizing the
semantic gap problem. In practice, a frequently used approach is to employ a
sophisticated training process that can be performed offline and that results in
a rapidly executable decision rule for online application. As we will see in the
forthcoming chapters, the most successful machine learning techniques employed
in media understanding follow this principle.

Eventually, the categorization process produces a class label. It is common
to label classes numerically but, of course, these numbers may stand for arbi-
trarily complex semantic concepts. As mentioned a couple of times already, it is
beneficial to feed the class labels of one iteration of media understanding back
into the process in order to climb higher on the semantic ladder and close the
semantic gap.

3.3 Description of Elements

This section continues the work started in Section 2.3. We present and discuss
the formal representation of descriptions and class labels. Furthermore, we in-
troduce a number of functions relevant for the manipulation of descriptions and
class labels.

The mathematical description of descriptions and classes pursues three goals:

1. Generalization of the containers used for media objects, descriptions and
classes.

2. Provision of a uniform model that can be used by all feature extraction
methods and all categorization methods.

3. Comparability of methods between media types.

The third requirement is guaranteed below by not distinguishing between
media types. We use the same syntax – introduced in the last chapter – for
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all types of media. In order to meet the two other requirements we define
descriptions as arrays isomorph to media objects:

F = [sl|s ∈ S ∧ l ∈ L] (3.1)

The only difference to the definition of O in the previous chapter is the
locations set L. For descriptions F the locations set is always one-dimensional,
i.e. each description is a vector of samples sl drawn from a set S. Typically,
s ∈ R.

Since F ∼ O, this definition of descriptions satisfies both requirements. The
array approach serves as a generalization of media objects and descriptions.
In fact, for most media types considered in this book, even the dimensionality
of media objects and descriptions is the same (though not the object size).
Secondly, since feature transformations take their input from media content or
other descriptions we cannot imagine a feature transformation that would not
be able to output descriptions of the same Gestalt as media objects.

Classes are defined as follows:

C = [sl|s ∈ S ∧ l ∈ ∅] (3.2)

That is, a class C is just another array but the locations set is empty. There-
fore, a class is a scalar value drawn from S. In the simplest case, S ∈ {0, 1}
(binary classification, membership) or S ∈ {−1, 1} (two disjoint classes). Prac-
tically, s ∈ N+.

This definition of class labels fulfills the above requirements trivially, since
C ∼ F . Additionally, it allows to use class labels as descriptions and feed them
back into the media understanding process. We agree that the notation puts the
entire formalism to an extreme, because eventually C ∼ O, i.e. class labels are
considered similar to media objects disregarding the different sizes. However,
from the practical point of view C ∼ O is a relatively weak statement. Many
research results suggest that human beings label sensual stimuli quickly and base
their reasoning on the class labels instead of the actual stimuli. Following this
line of argumentation would mean to state equivalence between media objects
and class labels. We do not intend to go that far. For the purpose of this book,
O ∼ F ∼ C is a convenient result of the formalization process.

In the remainder of this section we introduce important functions on media,
objects, descriptions and class labels. To begin with, the following functions com-
pute statistical moments (f ∈ F ): x = min(f), x = max(f), x = mean(f), x =
median(f), x = mode(f), x = span(f), x = stddev(f), x = var(f), x = skew(f).
From the usage of description f we can see that this variable type can be in-
terpreted as a distribution as well. Actually, most times we will not use these
functions but use the variables from Section A.4 instead.
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One important function that we will use frequently is the merging operator:
x, y ∈ F : x+y = [sl|s ∈ Sx∪Sy∧ l ∈ Lx∪offset(Ly,max(Lx))] where offset(a, b)
adds value b to all members of set a. That is, the resulting set contains all
values of y concatenated after the values of x. The merging operator can join
descriptions but likewise media objects and class labels.

The convolution operator is another frequently used function in media under-
standing. Below, we employ x⊗ y for the convolution based on the dot product:∑
i xiyi. This operator is a similarity measure. The maximum is reached if the

convolution set y is identical to the input data x. This form of the convolution
operator is typically employed in image understanding. In audio understanding
on the other hand, the convolution operator is frequently based on the L1 metric
used the last chapter: x⊗̄y =

∑
i |xi − yi|. The L1 metric is a distance measure.

The similarity of x, y is maximal if the convolution approaches zero. Throughout
this book, we use the symbol ⊗̄ to distinguish this negative correlation from the
positive correlation ⊗.

The third class of functions to be mentioned here are the similarity and
distance measures – a generalization of the convolution operators. We denote
m(x, y) for similarity measures and m−1(x, y) for distance measures. The output
of m(x, y) is maximal, if two objects x, y are identical. At the same time the
output of m−1(x, y) = 0. Hence, similarity and distance measures are defined
on [0, 1] with reversed meaning. As we will learn in the subsequent chapters,
distance is not the direct inverse of similarity. In fact, the correlation is based
on the natural logarithm. The symbol m−1 should therefore not be understood
as inversion in a strict mathematical sense.

We would like to close this section with a brief discussion of the mother
functions of the media understanding processing steps. Below, all feature trans-
formations will be derived from a function f = transform(o), o ∈ O, f ∈ F . This
function takes a media object o as input and generates a description f . How-
ever, since O ∼ F the usage x = transform(f) is also valid and means that the
description x is extracted from f .

Information filtering is abstracted in mother function y = filter(x) where
x, y ∈ F . That is, the filtering function generates a description from another
description, typically by removing noise and/or redundancy. Obviously, the
filtering function has the same signature as the transformation function and,
actually, information filtering is just another feature transformation process.

Eventually, all classifiers are derived from c = classify(f), f ∈ F, c ∈ C. The
categorization process transforms a description f into a class label c. However,
the same is true for the categorization function as for the other two. It is just
another transformation function. As we will see below this view is actually
correct. Most categorization functions employ the same building blocks – in
partially different order, but sometimes in the same – as feature transformation
functions. Throughout our journey through the world of media understanding
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we will endeavor to identify such building blocks.

3.4 Application Examples

The remainder of this chapter is dedicated to examples. We start with intro-
ducing the pseudo code used in the book by formalizing the example given in
Figure 3.1. Then follows one operationalzation of the big picture per media type
staring with text understanding and ending with bioinformation analysis.

The following algorithm expresses the media understanding example given
in Figure 3.1. Here, X is a given set of media objects.

foreach x in X do
y := color_hist(x)
y := dominant_colors(y)
z := classify_colors(y)
print x,z

endfor

function classify_colors takes x begin
y:=0
foreach color_bin in x do

if color_bin = GREEN then
y:=y+1

elsif color_bin = BLUE then
y:=y+1

endif
endfor

if y>=2 then
return 1

else
return 0

endif
end

For all elements of the media database X we extract a color histogram (de-
rived from the transformation mother function) and do filtering by dominant
colors (derived from the filtering mother function). The function color hist is
described in Section 5.2. The resulting descriptions y is a vector of three dom-
inant colors. The categorization function derives a class membership for each
media object. Its functionality is defined in function classify colors. We count
the number of color bins (elements of input x) that are either green or blue.
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Since both colors must occur, an object is only classified as 1 (standing for ’out-
door’) if the counter y ≥ 2. Please note that this pseudo code format is used
throughout the book. See the appendix for a list of reserved words.

The remaining examples of this section are for illustrating the flexibility of
the big picture. We employ it to solve one problem per media domain by a
simple algorithm. The solutions have not been chosen because they would rep-
resent the state-of-the-art but because they are – to our experience – easy to
comprehend. For every example we explain the problem first. Then, we sug-
gest a solution: a feature transformation method and a categorization method,
information filtering where required. The suggested methods are not explained
in detail – this will be done in later chapters. Comments will be made where
fundamental problems of media understanding are touched.

We start with a text retrieval problem, because in text retrieval feature ex-
traction is straightforward and intuitive. Categorization can be performed very
effectively. Imagine a data pool of recent business news in which we want to
identify the number of messages that express a positive development of the stock
price of IBM. For the sake of simplicity we operationalize this problem as iden-
tifying the terms ’IBM’ and ’up ... points’ in the text messages. We classify the
stock development of IBM as positive if 30% or more of the news that contain
’IBM’ also contain the second term.

In order to solve this problem we suggest the following feature transformation
on the business news items:

1. Remove all non-text content (e.g. markup) from the message.

2. Replace all tokens ’increase(s) ... points’ with ’up ... points’. That is some
kind of reduction to the principal parts of the terms.

3. Split the text in sentences and do the following operations for each sen-
tence.1

(a) Remove all sentences that do not contain both ’IBM’ and ’up ...
points’.

(b) For each remaining sentence count the number of words between the
two terms. If the count is greater than 15 use count = 15.

4. Fill the five lowest counts into a description vector. If less than five sen-
tences could be identified fill the remaining positions with ’15’.

The resulting descriptions are categorized as follows: Compute mean and
variance of all elements of the description vector. If the mean is below, say, five

1Please observe that this proceeding is a typical example of iterative media understanding.
In the subroutine we, again, apply a feature transformation and categorization. The result is
employed in the outer media understanding process.
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and variance is below four we decide to believe that this particular news item
expresses a positive development of the stock price of IBM. Eventually, we only
have to sum up all positively classified items, divide by the total number of news
items and compare to the given threshold of 30%.

Many things could be said on the proposed solutions. First of all it ap-
pears completely arbitrary. Hundreds of other reasonable paths could be cho-
sen. Please note that this is typical for media understanding. There are actually
thousands not hundreds of possible paths to the solution. It is therefore recom-
mendable to try just one that appears reasonable and, if it works, use it. If it
does not work, adjust the parameters and if that does not improve results try a
redesign.

Secondly, why do we compute this particular description? It has several
advantages. First, it considers the amount of text between the interesting terms.
The more words, the less we believe in the message. Second, we do not rely on
just one sentence but allow up to five. This strategy should make the algorithm
robust against noise. For example, if a negative news item on IBM is introduced
with last week’s positive performance, this would result in only one positive
entry in the description – too little for positive categorization.

Thirdly, why exactly these thresholds? For no particular reason. We have
just chosen them for the example. In the practical application of media under-
standing, trial and error is a common method. We start with some possibly
reasonable thresholds. If the system works, fine, if not, we adjust them in order
to meet the requirements of the media domain. The given values are just initial
guesses.

Many other aspects of the solutions could be discussed here but we consider
it beneficial to postpone them to the examples below and – the majority – to the
remaining chapters of the book. The three problems just discussed – degrees of
freedom, modeling of belief, and setting of thresholds – are of highest importance
since they reappear in almost all media understanding problems.

Normalized Face Regions

Figure 3.5: Face Identification Example ( c© CNBC ).

For the second example we chose the visual domain and try to identify faces
in news broadcasts. Figure 3.5 illustrates an example. In video frames like the
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one on the left side we want to identify all regions that could be faces. The
application could, for example, be video indexing. If all faces in all shots could
be identified reliably, the link between faces and shots could be used for quick
selection of all contributions of one particular person. Please note that the goal
of this application is face identification, not face recognition.

We suggest the following approach of feature transformation and categoriza-
tion as solution. Each frame is analyzed individually in the following way:

1. Reduce the frame size to 64x64 pixels by averaging neighboring pixels

2. Identify all pixels that have the color of one the following three skin color
models: African (brownish), Asian (yellowish), European (pinkish). Label
all pixels of skin color as ’1’ and all other as ’0’.

3. Investigate neighboring pixel groups labeled as ’1’. If the border is more
or less a circle, assume a face, if not, assume a non-face-object.

The resulting faces could be described by center point and diameter of the
face region. This algorithm mixes feature transformation and categorization
on various levels. The first operation provides a description of the video frame.
The second is an act of categorization. The third includes feature transformation
(identification of the border line, a so-called edge) and categorization of this line
as circular/otherwise. The details of this categorization (degree of freedom of
circularity) has been omitted for the sake of simplicity. It has to be mentioned
that skin color models are actually very successful in face identification.

The goal of the second example is to show that the big picture of media
understanding is iteratively applied in sophisticated applications. The goal is
reduction of the semantic gap to a minimum. If we used just the skin color
model for face identification the number of false positives, i.e. the number of
identified regions that are actually not faces, would be much larger than in the
suggested model. This model, however, could be extended by additional tests
(e.g. identification of the nose tip) resulting in further reduction of the semantic
gap paid by higher dimensionality of the parametrization problem and lower
performance. This connection is important: higher semantic meaning has to be
traded against performance in media understanding.

In the third problem we transfer the setting of the first example into the
speech domain. This time we try to identify the spoken English words ’IBM’ and
’up/positive/good’ in the audio channel of newscasts. The application could be
a preprocessing step for the first example, i.e. the provision of the text messages
investigated there. However, in order to keep the problem as simple as possible,
we do not suggest a solution for general speech recognition but only for these
particular four words.
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Our solution is based on a few assumptions. Firstly, we use the psychoa-
coustic knowledge that humans transmit speech hardly ever above 4000Hz (see
Chapter 4). Secondly, we use the hint of Figure 2.4 that the pronunciation of
Germanic languages results in sine waves without large changes in amplitude.
Therefore, we focus our feature transformation on the recognition of different
frequencies. We suggest the following algorithm:

1. Downsampling of the audio channel to 8000Hz2

2. Split the resulting audio stream in chunks of 30ms length. English phonemes
are seldom shorter than 30ms.

3. For every chunk count the number of pairs of samples of which one has a
positive sign and the other has a negative sign (so-called zero crossings).

4. Create one description vector per second of spoken audio that contains the
number of zero crossings per 30ms chunk.

For the categorization of description vectors we require references: in the
simplest case the queried words spoken by some person (often, the experimenter).
References provided, we suggest the following categorization method for each of
the four interesting words and each description vector.

1. Identify the item of the description vector most similar to the first element
of the reference by L1 distance. If the distance is below a certain threshold,
we believe that this position in the description vector is where the reference
word starts. Otherwise, the description vector is discarded.

2. If the start position has been identified, we identify the position of the last
phoneme of the reference in the tail of the description vector in the same
manner.

3. If the lengths of reference and start/end in the description vector are dif-
ferent, the latter object is scaled down by intrapolation.

4. Eventual categorization is performed by counting the L1 distances of all
corresponding phonemes of the reference and the downsampled start/end
segment of the description. If the sum of distances is below a certain
threshold, we believe in positive recognition of the word represented by
the reference vector.

This algorithm is a simple example of dynamic time warping – a method
used in audio understanding as well as bioinformation processing. Like the other

2If you do not understand why exactly 8000Hz, please google ’Nyquist Shannon law.’
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algorithms above this one relies heavily on thresholds and the arbitrary selection
of feature transformation methods and similarity measures. However, one major
difference is that here – though we investigate a semantically complex problem
– the big picture is not applied iteratively but in a straightforward fashion. One
flow of feature transformation and categorization provides a (practically, not too
bad) solution.

Figure 3.6: EEG β Wave.

The fourth example has been taken from the biosignal domain. In a large-
scale database we want to distinguish EEG samples of people with high brain
activity from EEG samples of idle people. The application could be psychological
testing of stress responses triggered by falling stock prices. In Figure 2.4 we have
already seen a typical EEG alpha wave (idle). In comparison, Figure 3.6 shows
one EEG channel of high brain activity (so-called beta wave).3 We can see two
fundamental differences. Firstly, the alpha wave is smooth while the beta wave
is not. Secondly, the alpha wave is sinusoid, the beta wave not.

Still under the impression of the last example and recalling the message
of the first chapter that audio and biosignals have a very similar nature, an
immediate guess for a good feature transformation applicable on this problem
would be the zero crossings rate, which should be much higher for EEG alpha
waves. However, if we investigate Figure 3.6 closely, we can see that, actually,
this signal also frequently crosses the zero line. The difference is not in the
number of zero crossings but in characteristics of their frequency. In the EEG
alpha wave the zero crossings occur at intervals with small variance, in the EEG
beta wave the variance of the intervals is high.

In consequence, we suggest the following feature transformation:

1. Identify all zero crossings in the signals under investigation.

2. Compute the intervals between neighboring zero crossings.

3. Compute mean and variance of interval size and use these moments as
description vector.

3For the expert: taken from position C4 of a 10-20 mask.
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Please note that the third step is actually an information filtering operation.
We could use the zero crossings intervals in normalized form as descriptions as
well. However, the computation of the two first statistical moments reduces the
size of the description significantly. For the categorization process the mean is
of little significance. If the variance is below a certain threshold we assume an
alpha wave otherwise a beta wave.

The biosignal example should convey two important messages. First, what-
ever works on audio is likely to work on biosignals as well. We will exploit this
insight in the next chapter. Second, information filtering operations can simplify
a media understanding problem dramatically. It lies in the nature of informa-
tion filtering that the separation of such operations from feature transformation
depends on the point of view of the experimenter.

a) no b) no c) yes d) no

Figure 3.7: Newscast Shot Sequence ( c© CNBC ).

The fifth example has been taken from the video domain. In the transmission
of a news channel we want to identify commercials. The application could be to
switch channels during commercials. Figure 3.7 shows four typical video frames
together with ground truth expressing whether or not these frames belong to
commercials.

We suggest the following solution for this problem:

1. Identify shot breaks using the following algorithm:

(a) Convert all frames from color to gray.

(b) Build a luminance histogram for each 25th frame that counts the
number of pixels belonging to bins of 0%, 10%, etc. gray level.

2. Identify shot breaks by measuring the L1 distance for pairs of neighboring
luminance histograms. If the distance is above a certain threshold we
assume a major change of content, i.e. a shot break.

3. Identify all faces in the first frame of each shot using the algorithm intro-
duced above.
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4. If no face of a well-known anchor person of this channel is visible in the
first frame, we assume the start of a commercial. The end is assumed
where a well-known face becomes visible again.

Certainly, this algorithm for the identification of ads is not suitable for prac-
tical application. Shots containing no faces at all would generally be classified as
commercials. Practically, chances of success would be higher if we investigated
the visibility of the headline instead of faces (or both). The purpose of this
toy solution is a different one. Often, it is good engineering to assemble a me-
dia understanding solution from existing well-evaluated building blocks. Rapid
prototyping and opportunistic error fixing are fundamental approaches in me-
dia understanding application design. Following this argumentation, using face
identification would be worth trying. All occasions where it fails could be fixed
by adding a second method to the categorization process.

The last example has been taken from the bioinformation domain. We want
to build a media understanding application that measures the overall similarity
of two DNA strings. A typical application would be the measurement of overall
similarity between species. Two DNA examples could look as follows:4

GTATAAGTTC TTCTATATAG TCAATTAAAG CAGGATGCCT ATTAATGGGA AGTGTGAAAG
GACCAAGTAA GAAAAGGTTA GTAGATTTTT CAAATAAGAG TAATGTCAAT CTAGTGGTTT

Each string is composed of symbols representing the four nucleotides that
build up the amino acids: Adenine, Cytosine, Guanine and Thymine. Each
triplet of nucleotides defines one amino acid. The 64 possible combinations
result in only twenty amino acids with different properties. The DNA of living
organisms consists of between 2.105 and 2.1011 amino acids. Of this number,
more than 90% (in the human genome, 97%) is junk DNA that does not belong
to genes. Genes are mostly identified by the start codon ’ATG’ and the first
occurrence of one of the stop codons ’TAA’, ’TAG’ or ’TGA.’ In order to do a
general comparison of two DNA strings we need to extract the genes and align
them pairwise.

We suggest the following feature transformation procedure as part of the
solution. For each pair of DNA strings do the following operations:

1. Extract all genes using start and stop codons.

2. Replace all triplets of nucleotides in all genes by their number in the genetic
code ({1..64}).

3. Take an offset of 32 from all numbers.

4. Count the number of zero crossings in all genes.
4GenBank Sample Record Saccharomyces cerevisiae.
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5. Represent each gene by mean and variance of the intervals between zero
crossings.

The categorization could be performed as follows:

1. Align those genes of the two strings that have the minimum L1 distance
regarding their description vectors (both mean and variance).

2. Compute a score that rewards linear alignment, i.e. if the first gene of one
string is aligned with the first of the second, and so on (e.g. by evaluating
the distances in position created by the alignment).

3. Categorize two strings as similar, if their score is below a certain threshold,
otherwise as non-similar.

This procedure is very different from what is actually used in DNA sequence
alignment. However, even though this is just a toy example, its practical perfor-
mance is not too bad while having a significantly better performance than the
standard approach of dynamic time warping of nucleotide strings.

These examples have illustrated that the big picture of media understanding
is applicable in all six considered media domains. Sometimes a straightforward
application is sufficient, at other times iterative application is required on mul-
tiple levels. The experimenter has to decide what is required in order to reach a
minimal semantic gap at acceptable algorithmic complexity and performance.

It has to be noted that all of these examples are single-media examples.
Of course, single-media understanding can be embedded in a true multimedia
understanding process. Typically, feature transformation and categorization is
performed on the individual media objects first. Then, descriptions are merged
and a categorization process is performed that takes all individual results into
account. The question of multimedia understanding will be discussed in detail
in Chapter 7.

In conclusion, we would like to stress again that the presented solutions where
chosen for understandability not because they would represent the state-of-the-
art in media understanding. We generally believe that the best approach to
media understanding is based on a comprehensive ground truth and a work-
bench of feature transformations and classifiers that are recombined until the
ground truth has been imitated to an acceptable degree. This approach can
fairly be called bottom-up media understanding while the examples above where
analyzed top-down. In practice, top-down solutions hardly ever meet the expec-
tations because the experimenter is usually not aware of all cases and exceptions
that may occur in a particular media body. Therefore, we prefer the bottom-
up approach. In the next chapters we will collect the tools required for both
directions of media understanding.





Chapter 4

Description of Audio and
Biosignals

Introduces the fundamental properties of audio and of biosignals, lists typical ap-
plications and media understanding solutions, discusses feature transformations
applied on audio and shows that the same transformations can also be applied
on biosignals.

4.1 Introduction and Dimensions of Hearing

The first three chapters were dedicated to the setting of media understanding.
We have investigated the scope, the media types and the general structure of
media understanding applications. In this and the next two chapters we inves-
tigate methods for the description of media. The focus is on simple methods
that explain the fundamental concept of feature transformation. Still, most of
the presented methods are used practically and have proven very successful in
numerous applications.

The present chapter deals with the description of audio and of biosignals.
Why do we start with audio? One reason is that audio is a structurally simple
data type. A mono recording may capture music as well as speech and consists
only of one stream of amplitude values. A second reason is the importance of
the aural sense for the human being. Until recently, when due to the rising
importance of visual media the visual sense became dominant, human culture
was an oral culture, i.e. dominated by the sense of hearing. Even today, many
non-western cultures are dominated by this sense. The visitor of sub-Saharan
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Africa and of parts of Oceania will find that the radio and the mobile phone
are ubiquitous in those regions while television is significantly less important. A
third reason for starting with audio is the incredibly efficient implementation of
the human sense of hearing. Outer and middle ear act as frequency amplifiers
and band filters, the cochlea organ implements a transformation similar to the
Fourier transform, and the brain can implement the sense of hearing by only
3.104 nerve cells – in comparison to 2.106 for vision and 4.107 for the olfactory
sense (see Chapter 23 for more). Eventually, from the pedagogic point of view,
starting with audio makes sense, because the methods used on other data types
are almost all related to what is employed on audio. In particular, biosignal
feature transformation is to a large degree a subset of what is applied in the
audio domain. It makes, therefore, sense to include biosignal description in this
chapter.

Though technically just a one-dimensional signal, audio has a variety of se-
mantic dimensions. The most fundamental distinction is by the type of content
into the following three groups:

• Speech

• Music

• Environmental sounds

The first two categories do not require explanation. The third, on the other
hand, is a very heterogeneous group. It includes the sounds created by animals
as well as traffic sounds. Further items are sounds created by machines, sounds
created by humans that are neither speech nor music (e.g. laughter), literally
environmental sounds (e.g. the booming sea) and many more. In the last sec-
tion of Chapter 2 we have already seen that different types of content lead to
significantly different technical characteristics. We have, for example, seen that
speech signals are generally simpler, sinusoid signals than music signals. Envi-
ronmental sounds are sometimes similar to music (e.g. whale sounds), but most
times highly different from both speech and music and rather similar to EEG
biosignals (e.g. β waves).

Next to the type of content, there are several other dimensions of audio. The
following list of properties is certainly not exhaustive.

• Tempo: In speech, different subjects and environmental conditions require
different tempo. The tempo of music is related to the type of music.

• Rhythm: Music is generally distinguished by the rhythm patterns that are
the foundation of a particular melody. However, a good speaker will also
try to induce a rhythm that increases the level of attention of the listener.
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• Melody : Captures the arrangement of tones (pitches) based on the rhythm.
In speech, bound to the phoneme structure of the language.

• Harmony : Describes the perception of simultaneous melodies, i.e. pitches.
This property is highly relevant for music, but of course not for speech.

• Timbre: The overtone structure created by a sound-creating device (e.g.
human voice, brass instruments).

• Instrumentation: The perception of simultaneous timbres. Like harmony,
this feature is relevant for the understanding of music and, sometimes, of
environmental sounds.

Each of these properties is independent of the others, i.e. one dimension.
Though the tempo is an important factor for the perception of rhythm, the
same rhythm can be combined with different tempos. The same melody can
be played with different instruments creating different perceptions of harmony,
timbre and instrumentation.

Next to these technical dimensions of audio, we also have to consider inner-
human dimensions like the following.

• Perception of complexity : In particular, the perception of complex music
(complex rhythm, melody, harmony, timbre, instrumentation) requires an
expert listener. Sophisticated music may be perceived as unpleasant by
the untrained ear while the expert may regard it as highest perfection.

• Priming of the listener : Different cultures have developed different mod-
els of sound, in particular, music. For example, the application of the
Pythagorean tuning laws constitutes a division line between so-called west-
ern music and other musical styles. The priming of the listener is of highest
importance for audio perception.

• Mood of the listener : The perception of audio fluctuates with the state of
the human nervous system. For example, a tempo that is in one situation
perceived as pleasant may be perceived unpleasant in another.

Obviously, the subjective inner-human dimensions are out of scope of audio
understanding. These perceptual properties cannot be extracted from the media
objects. Properties that can be captured include the following.

• Loudness

• Duration

• Pitch
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• Rhythm

• Timbre

The first property is based on the pressure level of sound, frequently measured
in Bel. Below, we will see that the human perception of loudness is not linearly
equivalent to sound pressure. However, this property is important, for example,
for distinguishing different types of environmental sounds. Duration is related to
loudness. This property captures the amount of time that sounds of comparable
loudness are perceivable.

Pitch and rhythm are also related. In the context of this book, we under-
stand as pitch the recurring fundamental frequency of a short window of time.
In contrast, rhythm shall be a time-limited sequence of amplitude peaks that
reappears regularly over long windows of time. Eventually, the understanding
of timbre here is, by and large, equivalent to the structure of overtones.

Comparing the list of describable properties with the dimensions of sound
given above, we can see that the actually extractable properties are much simpler
than the properties perceived by human beings. This fact is a typical example
for the semantic gap in the feature transformation step of media understanding.
Only a small amount of the semantic characteristics important to human beings
can be transferred to the machine. The rest is ignored. It is, therefore, no
surprise that many complex audio understanding problems have not yet been
solved satisfactorily.

SPL (dB)

Frequency (kHz)
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Figure 4.1: Thresholds of Hearing.

Before we move on to the actual feature transformations we consider it ben-
eficial to introduce three fundamental bits of knowledge of psychoacoustics (see
also Chapter 23). Figure 4.1 illustrates the thresholds of human hearing. These
thresholds depend on the sound pressure level (SPL) and the frequency of the
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sound. We can see that the best hearing is achieved (10dB and less) at frequen-
cies around 4kHz. Please note that the frequency dimension is scaled logarith-
mical. Human hearing has a limit at around 20kHz. The threshold of pain lies
somewhere between 110dB and 140dB.1

The two kidney-shaped objects in the center of Figure 4.1 represent the
areas where speech and music can be perceived. We can see that speech uses
significantly smaller bands of frequencies and amplitudes, which may be one
reason why the speech understanding problem has been solved to a much more
satisfactory degree than the problems of music understanding. Another reason,
of course, is the relatively small number of sounds relevant in speech processing.

SPL (dB)

Perceived Loudness (Sone)
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Figure 4.2: Perceived Loudness in Sone.

Figures 4.2 and 4.3 express two fundamental characteristics of human audio
perception. The first graph relates the physical level of sound pressure that
stimulates the ear-drum to the perceived loudness measured in Sone. Please
note that the sone scale is logarithmic. We can see that the perceived loudness
increases over-linearly, i.e. small increases in SPL cause large increases in per-
ceived loudness. Below a certain threshold loudness is not perceived anymore.

The second graph relates the frequency of a sound to the perceived pitch
measured in Mel. Below a frequency of 1kHz, the pitch increases over-linearly, i.e.
doubling the frequency causes more than doubled pitch. Above 1kHz, the effect
is reversed. Doubling frequency causes only under-linear increases of perceived

1As every parent will find, an unpleasantly low value. In the night before writing this
paragraph the author could, for example, measure that his younger daughter could cry at
125dB. A higher threshold of pain would be desirable – but certainly cause adaptation in the
offspring.
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pitch.
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Figure 4.3: Perceived Pitch in Mel and Logarithmic Curve (dotted).

The sone transform and the mel transform are two fundamental truths of
human sound perception. It is, therefore, important to consider them in feature
extraction from audio. The given audio signal expresses amplitudes over time.
These amplitudes need to be transformed into sone in order to represent the
human perception correctly. From the amplitudes over time frequencies can
relatively easily be computed. These frequencies need to be weighted by the mel
transform in order to represent the human pitch perception correctly.

The remainder of this chapter is organized in three sections. In the next sec-
tion, we introduce fundamental audio transformations as they are used in media
understanding today. The subsequent chapter is dedicated to more advanced
audio transformations that make use of the convolution operators discussed in
the previous chapters. The last chapter introduces the transformations typically
employed on biosignals and discusses the similarities between audio transforma-
tions and biosignal transformations.

4.2 Fundamental Audio Transformations

Below, we describe fundamental features for the description of loudness, duration
and pitch. Rhythm and timbre descriptions are discussed in the next section.
Please note that all the feature transformations we are going to describe are
recipes, i.e. programs assembled from building blocks that have proven successful
in practical application. The design of feature transformations is not a scientific
undertaking but an engineering process. There is, therefore, no point in trying to
prove one specific feature transformation. We will rather argue why the chosen
building blocks should be useful in order to solve a particular problem.

From a rigorous point of view, all audio descriptions are local descriptions
and do not belong to this chapter but to Chapter 14. This is because almost
all audio descriptions are not extracted from the entire audio signal but from
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Window Size Hop Size

Figure 4.4: Localization by Windowing.

time-limited windows. Figure 4.4 illustrates two windows. The windows consist
of the samples inside the time limits begin and end. Windows are typically
defined by two parameters. The window size defines the number of samples
considered by the feature transformation. Typical window sizes are 20ms (e.g.
about one phoneme of speech), 40ms (equivalent to one frame of 25 frames-
per-second video), 1s (chunks of music, environmental sounds). The hop size
defines the number of samples not considered between two windows. The hop
size may be zero (all samples are considered), smaller than zero (some samples
are considered in more than one description) or larger than zero (some samples
are ignored).

In audio feature transformation, the window size is often fixed and, in conse-
quence, the overall size of the description would vary with the size of the media
object. This undesired property can be avoided by normalization of the media
objects under consideration prior to feature extraction or by defining a max-
imum length description and filling up empty spaces of shorter media objects
with zero values.

Before jumping into the pool of features, we should reflect the properties
desired from a description which is used as input to categorization. If a set
of media objects should be categorized into a finite set of classes, the feature
transformation step should advance the process as far as possible, i.e. create
descriptions that are as similar to the class labels as possible. For this end, it
is desired that media objects belonging to the same class have highly similar
descriptions. That is, the variance of corresponding description elements should
approach zero. Additionally, descriptions of media objects belonging to distinct
classes should be as different as possible. That is, the variance of corresponding
description elements should be maximal. These are the standards by which fea-
ture transformations should be measured in media understanding. See Chapter
11 for more.

For a start, we investigate three examples for loudness features.

• Short-time energy
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• Other simple statistical features

• Logarithmic attack time

In all three cases, we want to measure the energy of the signal. Such a
feature transformation may be valuable for the categorization of pieces of mu-
sic into genres (e.g. pop music vs. heavy metal), the recognition of emer-
gency situation (raised voice, alarm signals), etc. One of the most frequently
used feature transformations is the short-time energy which is defined as follows
(o ∈ O = [sl|s ∈ S ∧ l ∈ Ltime] as defined in Chapter 2):

fx =

h−1∑
i=0

s2
i+x∗h

h
(4.1)

The description f ∈ F holds the squared (audio samples have a sign!) sum
of all samples in window x of size h. Please observe that this formula does not
consider a hop size. Alternatively, the following short-time energy is used as
well:

fx =

h−1∑
i=0

|si+x∗h|

h
(4.2)

Though the values and their relationships are different, the alternative defini-
tion practically leads to the same result. The embedding of the above equations
in a feature transformation algorithm could be performed as follows:

h:=16000/40
for x:=0:size(o)/h

f(x):=0
for i:=0:h-1

f(x):=f(x)+|s(i+x*h)|
endfor

endfor

This simple algorithm makes use of the second equation. It describes an audio
object o sampled at 16kHz in chunks of window size 40ms, i.e. 400 samples. The
result is stored in the description vector f . This algorithm provides a prototype
for most feature transformations discussed below since it summarizes the input
signal. We will, therefore, refer to it where necessary.

Alternatively to short time energy, a number of statistical moments could be
employed for capturing loudness. Suggestions include the median of the squared
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samples (less prone to outliers than the mean), the maximum amplitude, the
average of the n largest amplitudes, the number of samples above the mean,
etc. These moments could be weighted by a belief score, for example, the span
of samples, variance or standard deviation – of the entire window or just the
samples above the mean, the top n samples, etc. Statistical moments are used
in many feature transformations. The decision, which moment to use has to
be made empirically. If one particular moment performs well on media objects
characteristic of the media type under consideration, it is advisable to consider
it for feature transformation.

Psychoacoustic remark. In the above definition of loudness, we did not con-
sider the psychoacoustic facts depicted in Figure 4.2. For practical usage of
moments of loudness it should be beneficial to apply the sone transformation on
the samples before summing them up.

Figure 4.5: The Attack-Decay-Sustain-Release Model (ADSR) of Sound.

The third loudness feature that we want to discuss was defined in the MPEG-7
standard for media description [191]. It assumes a particular model of sound (in
terms of amplitude) depicted in Figure 4.5. According to the ADSR model each
sound consists of four phases: the attack phase where the amplitude increases
strongly, the decay phase where the amplitude decreases a little, the sustain
phase that holds the amplitude and the release phase where the sound fades
out. The log attack time feature transformation uses this model for identifying
attack phases of sounds in audio signals. In order to measure the attack time
it is sufficient to detect amplitude peaks, i.e. samples with amplitudes signifi-
cantly higher than all other samples in a to be defined neighborhood. From a
detected peak, the log attack time can be approximated by searching backward
in time to the next minimum, extrapolating the position of the zero crossing of
this sound and taking the logarithm of the time span between extrapolated start
and amplitude peak.

Criticism. Log attack time is not necessarily a loudness feature. It describes
the time that a sound needs for reaching its maximum but does not express the
magnitude of this maximum. However, empirically log attack time correlates
negatively with loudness. Quickly attacking sounds are perceived as sharper,
louder sounds. That is, from a psychoacoustic point of view log attack time
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does indeed measure perceived loudness. Taking the logarithm helps this pro-
cess by stressing differences in magnitude in attack time. Small differences are
reduced. Large differences are emphasized. Additionally, nothing can be said
against adding the magnitude of the attack peak to the description – as some
kind of belief score for the attack time (higher peak=higher belief in the im-
portance of this particular attack time). Eventually, the reader has to be aware
that the extrapolation of log attack time is non-trivial since most audio media
consist of overlapping sounds. The interesting sound (signal) will, therefore, be
hidden (masked) under many irrelevant sounds (noise). That is, one fundamen-
tal problem of log attack time computation is a generally bad signal to noise
ratio (see Section 4.4).

Figure 4.6: Description of Duration.

Before we turn to the description of pitch, we would like to introduce a
descriptor for the duration of segments of similar amplitude. This descriptor
has turned out valuable for the categorization of various kinds of environmen-
tal sounds. Figure 4.6 illustrates one possible implementation. The dotted lines
stand for the description values. Segments are described by maximum amplitude
at fixed length intervals and by the span of maximum and minimum amplitude.
Another – practically superior – formulation would be to start from one par-
ticular amplitude, extend the duration until maximum/minimum of amplitude
exceeds a pre-defined threshold (e.g. 10%) and use the duration value as de-
scription. The advantages of this approach are higher accuracy and flexibility
concerning the characteristics of the media type. The disadvantages are the need
to set a parameter, and the possibility that the feature transformation process
ends up with a long non-discriminative list of short duration values that form
an irregular description vector.

Please note that at this point we touch a fundamental problem of feature
transformation already for the second time. Starting from the semantic descrip-
tion of an interesting media property (loudness, duration), a scheme for feature
transformation can be developed that should precisely represent it. Such accu-
rate models, however, regularly require parameterization and, in practice, sur-
prisingly often turn out inferior to less accurate models that cannot be linked to
the semantic media understanding goal by straightforward reasoning. The link is
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mostly only statistical. Nevertheless, in media understanding such a statistical
link is always preferable if it results in better descriptions.

Zero Crossings per Window

Figure 4.7: Zero Crossings Rate.

Figure 4.7 illustrates a simple yet powerful feature transformation for pitch
description: the zero crossings rate (ZCR). The ZCR is a measure for the fun-
damental frequency of a window of sound. It simply counts the number of pairs
of samples with alternating sign. If this sum is large, we assume a high funda-
mental frequency, if it is low, we assume a low fundamental frequency. From the
fundamental frequency of a short window of sound we have a direct link to the
pitch. The higher the fundamental frequency, the higher the pitch. In order to
meet with psychoacoustic insights it is, furthermore, advisable to apply the mel
transformation on the ZCR values, i.e. to transform the fundamental frequency
into perceived pitch.

The ZCR – though simple and fast to compute – is of highest significance for
many audio understanding applications. Often, it has proven to hold information
that cannot be extracted by complex spectrum-based descriptions as the ones
discussed in Chapter 13. In conclusion, it is advisable to include the ZCR in any
description applied on audible media even if a reasonable semantic explanation
cannot be given.

As a second feature transformation for the recognition of the fundamental
frequency we would like to mention the peak histogram. This feature employs
autocorrelation in order to approximate the pitch of sounds. Since autocorrela-
tion is based on convolution this feature transformation will be explained in the
next section.

We would like to close this section with two remarks. Firstly, the presented
feature transformations rate among the simplest used in audio description. They
were chosen because of their simplicity as introductory examples but as well,
because they are really used in state-of-the-art audio understanding applications.
In particular, short time energy and zero crossings rate are important features
for speech, music and environmental sound categorization. More audio feature
transformations can be found in the excellent source [268].
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Secondly, we would like to touch the question of multiple channels. Audio, in
particular, is often available in stereo or better quality, i.e. two or more channels
exist. What can we do with those channels? Generally, three approaches are
thinkable:

1. Throw away all channels but one. An example scenario could be speech
recognition from a good-quality source.

2. Compute descriptions for each channel and use all descriptions. This strat-
egy makes sense if the channels contain different information (e.g. music
recordings with the vocals on one channel and the instrumentation on the
other).

3. Compute descriptions for each channel and merge them statistically. For
example, the mean could be used for description and the standard devia-
tion as a belief score. This strategy could turn out beneficial in scenarios
where different channels are exposed to different sources of noise (e.g. in
a traffic surveillance system).

Which approach to take depends on the characteristics of the involved media.
Please refer to Chapter 7 for a deeper discussion of this problem.

4.3 Audio Description by Convolution

So far, we have investigated feature transformations that employ statistical op-
erations on fixed-size windows of samples in order to build up a description. This
approach works well for the description of loudness, duration and fundamental
frequency. Complex semantic categories such as rhythm and timbre, however,
cannot be described properly by statistical moments. Therefore, the transforma-
tions discussed in this section implement a fundamentally different idea. They
employ the convolution operators on windows of variable size in order to identify
extremes that express the desired media property.

An example should make the idea clear. Figure 4.8 depicts two waves: Signal
(a) is a low-frequency sound of sinusoid shape (no overtones). Signal (b) is also
a pure tone, but of higher frequency. The two windows encapsulate exactly one
sine wavelet each. As can be seen from the figure the window of signal (a) is
wider than the window of signal (b), precisely ha = 2hb. That is, the window
size h is a proper description for the media pitch, since the larger the window
size the lower the pitch is.

The only problem of this approach is identifying the window size that encap-
sulates exactly one basic wavelet. Real-world audio signals are based on complex
instrumentations, including sources with complicated overtone structures as well
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a) low

b) high

Figure 4.8: Autocorrelation and Window Size.

as noise. Identifying the right h is not as easy then as for pure tones. The ap-
proach commonly taken is based on convolution. The feature transformation
pitch histogram, for example, implements the following model where windows
oi = cut(o, ih, (i + 1)h − 1) of size h are cut from an audio object o ∈ O with
locations set L.

fx = arg max
h→1

max(L)
h −1∑
i=0

oi ⊗ oi+1 (4.3)

The implementing algorithm starts with a small window size and reduces h in
the process towards zero. For each window size the convolution of the resulting
windows is computed using the inner product and eventually summed up. Of
the resulting sums the one with the highest value hmax is chosen and used as
description. Why the highest value? The inner product is maximal for two
identical input objects. Hence, the maximum value indicates that windows of
this size encapsulate the most basic reappearing object, i.e. the sought wavelet.

This approach is commonly referred to as autocorrelation since it applies the
means of correlation (here, positive convolution) on fractions of the same signal.
The pitch histogram is a feature transformation that identifies the fundamental
frequency of a signal like the ZCR does. However, since ZCR can be computed
much faster, the pitch histogram is not as frequently used as the ZCR.

One paramount feature for the measurement of rhythm in audio signals is
linear predictive coding (LPC). In fact, LPC as a method is not just applied
in the audio domain but as well on other data types such as stocks, biosignals
and various forms of statistical data. There, it is usually used for the prediction
of future values based on a given data set – which is the origin of the name.
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On audio it is typically applied as follows (same objects given as for the pitch
histogram):

fx = arg min
h∈{x:y}

max(L)
h −1∑
i=0

oi⊗̄oi+1 (4.4)

The formula appears highly similar to Equation 4.3. In fact, the ideas of LPC
and pitch histogram are the same. However, the implementation is different.
LPC uses negative convolution instead of positive convolution. That is, the
operator is most sensitive to differences instead of similarities. The negative
convolution becomes minimal for identical objects. Hence, the utilization of
the minimum instead of the maximum. In Section 3.3 we already introduced
negative convolution based on the L1 metric. For LPC, the operator is usually
based on Euclidean distance:

x⊗̄y =

√√√√√ n∑
i=0

(xi − yi)2

n
(4.5)

Since this formulation is equivalent to the least squares method in regression
the LPC is also referred to as auto-regression. What is the difference between
autocorrelation by convolution based on the inner product and auto-regression
by convolution based on the Euclidean distance? According to psychological
research (see Chapter 28 for details) one major difference is, that the inner
product models how humans perceive similarity in simple structures (so-called
separable stimuli) while the Euclidean distance models the way we perceive the
difference of complex structures (so-called integral stimuli). Hence, the latter
method should be superior on structures more sophisticated than wavelets.

Indeed, the second difference between LPC and pitch histogram is that the
latter does not start window size h at a comparably small value and moves it
towards one – rather, h iterates linearly through a set of values between the
relatively high limits x, y. In consequence, LPC is sensible to recurring windows
of comparably high complexity. If the limits x, y are chosen properly ’recurring
windows of comparably high complexity’ is a fair definition of rhythm. That is
why LPC is employed as a feature transformation for rhythm detection.

The last feature transformation based on convolution that we would like
to describe here is the audio harmonicity transform defined in the MPEG-7
standard. Audio harmonicity implements the following idea:

fx = σ

({max(L)
h −1∑
i=0

oi ⊗ oi+1

∣∣∣∣h ∈ {x : y}
})

(4.6)
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That is, for a given range x : y of window sizes the inner products are
computed and the standard deviation of the averages for all considered values
of h is employed as description. Why this algorithm? Timbre is the structure
of overtones particular for a certain sound-generating source (e.g. instrument).
Audio harmonicity captures this property by computing the self-similarity of
the signal at various levels h and summarizing these self-similarities by their
variance. Alternatively, another statistical measure of variation or even the
entire set of values could be employed as description. This timbre feature is
based on the idea of the correlogram, a method that will be described in the
next section since it is frequently used on biosignals.

The presented feature transformations are just examples. LPC and pitch
histogram are frequently-used methods while the timbre is often captured by
spectral features (see Chapter 13). However, all of them are excellent examples
for the modeling of signal self-similarity by convolution. Summarization and
convolution are – as we will see – the two principal approaches in feature trans-
formation. These feature transformations together with the statistical feature
transformations introduced in the last sections are able to provide powerful de-
scriptions for all sorts of audio understanding applications. In the next section
we will see, how related methods are employed for the description of biosignals.

4.4 Biosignal Feature Transformations

This section is organized as follows. First we investigate the technical pro-
cess of biosignal capturing. Then, we outline important applications based on
biosignals. Eventually, we introduce feature transformations suitable for these
applications and discuss their similarities with audio feature transformations.

The machine understanding of audio and biosignals are related domains even
though the applications do not express this relationship. From Figure 2.2 we can
see that the methods employed for biosignal understanding are a subset of what
is employed on audio. As a matter of fact, most audio feature transformations
are similarly applied on biosignals. The major difference between the domains
is in categorization where more sophisticated methods are used on audio today.
Technically, audio and biosignals are isomorph. The dimensions and types of
samples are the same, the sampling rates highly similar. Typical bandwidth
requirements of biosignals lie between 1kHz (ECG) and 10kHz (EEG).

Biosignals are usually measured by electrodes that are sensitive to changes
of potentials. Since this approach leaves the surface of the body intact, it is
called non-inversive. Inversive methods such as electrocorticogram and intracor-
ticogram shall not be discussed here, because they are hardly ever used for media
understanding (rather, for clinical purposes). The typical non-inversive setup
comprises one to many electrodes for the signals of interest that are measured
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against a baseline (bi-polar capturing). For example, for ECG (heart signal) cap-
turing two electrodes are sufficient. For EEG (brain signals) capturing 20 and
more signal channels are typically used. Other signal types include EOG (eyes)
and EMG (muscles) with similar numbers of channels. Before feature trans-
formation the potentials are usually amplified externally (passive electrodes) or
in the (active) electrodes. Typical bandwidths of the signals range from 0.2Hz
(respiration) over 1Hz (EEG) up to 5Hz (heart rate).

NZ

FZ

C4T9 T10CZ

Figure 4.9: The 10-20 EEG Capturing System.

For the capturing of brain signals for scientific purposes, an international
standard for the layout of the electrodes exists: the 10-20 system. It is depicted
in Figure 4.9. The name is derived from the angles between geodesic lines on caps
implementing this convex scheme. For example, the angle between electrodes
FZ and CZ is 20 degrees. The 10-20 cap is positioned on the human head with
point NZ above the nose and points T9, T10 above the ears. The standardized
naming of electrode positions facilitates the exchange of research results. Similar
systems exist for EMG capturing.

Different types of biosignals have different properties. See Figure 4.10 for
examples. The EEG α wave is quasi-periodic and harmonic (smooth). The β
wave (taken from point C4) is neither harmonic nor periodic. The ECG signal,
on the other hand, is not harmonic but quasi-periodic. It is furthermore, a pulse
signal (periodic spikes that express the contraction of the heart muscle do exist)
and has a baseline to which the signal returns after each pulse. These properties



4.4. BIOSIGNAL FEATURE TRANSFORMATIONS 75

EEG α

EEG β

ECG

Figure 4.10: Types of Biosginals.

are essential for the understanding of the signal. Different characteristics require
different feature transformations and allow for the implementation of different
applications. It makes, for example, no use measuring the energy of an ECG
signal. However, the fundamental frequency of the heart signal could be captured
by the ZCR.

One particular property of EEG signals is their extremely bad signal to noise
ratio. An average electrode has a receptive field of 7mm2. Considering the
neuronal density of the brain and the size of its surface, a single electrode may
capture the potentials of up to 5.104 neurons! Since only a small number of
neurons is usually employed in one particular cerebral process (signal) the vast
majority of the potentials merged in one electrode are noise. Under these cir-
cumstances only very general applications can be implemented.

Most biosignal processing applications are based on EEG waves. Non-EEG
applications include the measurement of excitement (for example, by heart rate,
skin resistance sensors) and the measurement of exhaustion (e.g. pulse sensor,
ECG). These applications are only of minor interest for media understanding.
Interesting and relevant EEG applications include the recognition of:

• Steady-state visual evoked potentials: These are significant signal peaks
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caused by the presentation of unexpected or desired visual stimuli. A
typical application would be the presentation of images of food to a locked-
in person and selection of the one dish that causes the highest potential.
Since such peaks are observed typically 300ms after presentation of the
stimulus the problem is also called P300 recognition.

• K complexes: K complexes are positive potential peaks followed by equally-
sized negative potential peaks. They are very similar to evoked potentials
and typical for non-REM sleep. The application is therefore, categorization
of sleep phases.

• Slow cortical potentials: These are amplitude changes of very low fre-
quency. Applications lie in the clinical analysis where the correlation
between changes in the blood flow and slow cortical potentials could be
shown.

• Changes of oscillatory activity : Every neuron oscillates. Changes in os-
cillatory activity become visible as changes in frequency and amplitude.
They express a change in synchronization and desynchronization of neu-
ral complexes and are, for example, employed for the recognition of the
symptoms of epilepsy.

• Real/virtual motor activity : Motor activity becomes visible as particular
patterns over several EEG channels in form of amplitude and frequency
changes. The recognition of virtual motor activity can, for example, be
employed for the movement of protheses and wheelchairs.

Most of these applications are targeted at clinical purposes. The most in-
teresting one for media understanding are certainly P300 recognition and motor
activity recognition. For the recognition of such patterns, we have the following
groups of feature transformations available:

• Amplitude features

• Spectral features

• Template features

The two latter groups are discussed in Chapters 13 and 24, respectively. The
first group are those feature transformations that generate descriptions directly
from the potentials captured by the electrodes. Naturally, these features are
very simple. They allow for the recognition of the same types of events as their
relatives employed on audio: energy, fundamental frequency and peaks detec-
tion/rhythm, in particular. Energy can be employed to identify motor activity,
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fundamental frequency for the recognition of slow cortical potentials and oscilla-
tory activity and peak detection/rhythm for the recognition of evoked potentials
and K complexes. In the next paragraphs, we will investigate some feature trans-
formations for these purposes.

Generally, biosignal feature transformations employ windowing. Typical win-
dow sizes h are 200ms (ECG), 1s (EEG) and 5s (respiration). Obviously, the
window size correlates with the bandwidth and is considerably larger than what
is used in audio understanding. Audio signals are usually denser, i.e. of higher
frequency. However, the methods applied on these windows are highly similar
to audio understanding. The energy of a window of potentials is computed by
the short time energy algorithm (used for loudness on audio). Alternatively,
statistical moments are employed for energy description. The fundamental fre-
quency is usually extracted using the zero crossings rate, only that the method
is sometimes called period counting.

Window Size

Average Autocorrelation

P1 P2

Figure 4.11: A Typical Correlogram of a Biosignal.

The problem of peak detection and rhythm detection is of significantly higher
relevance for biosignals than the description of energy and fundamental fre-
quency. It is commonly referred to as periodicity recognition. Two fundamental
approaches are the Pan Tomkins feature transformation and the correlogram.
The first method recognizes signal peaks by the following algorithm:

1. Compute the first derivatives of the samples. That is, each pair of neigh-
boring samples (si, si+1) is represented by si+1 − si.

2. Remove the sign by squaring the derived signal.

3. Select values close to zero as peaks (low-pass filter).

Frequently, the Pan Tomkins approach employs a Barkhausen band filter for
pre-processing (see Chapter 23). The first derivative of an extreme (discrete)
signal will be (close to) zero. The same idea for peak detection is – as we will
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see in Chapter 14 – often employed on visual media. The peaks detected by the
Pan Tomkins approach can be used to describe the periodicity as, for example,
mean and standard deviation of the intervals between pairs of peaks. The Pan
Tomkins approach works well on smooth signals.

An alternative, visual method popular in biosignal processing is the correl-
ogram. Figure 4.11 illustrates an example. The correlogram is usually con-
structed by autocorrelation based on the inner product. Like in the case of
the pitch histogram the window size is varied from a reasonable starting point
close to zero. At every window size, the average autocorrelation of the signal is
computed and printed in the correlogram. That is, a peak in the correlogram
indicates a recurring rhythm pattern at this window length. A correlogram
without peaks indicates a random signal. Implementing the correlogram as a
description is equivalent to the pitch histogram. The correlogram method works
well on quasi-periodic and pulsed signals.

Interestingly, linear predictive coding is hardly used in biosignal understand-
ing. This is surprising since statistical methods, including regression are of
highest significance in biosignal processing. For the scientist, it may be inter-
esting to base P300 recognition-based media understanding on linear predictive
coding, since this method performs so well in the audio domain.

In summary, biosignal understanding can be implemented with feature trans-
formations very similar to those applied on audio. The usage of non-inversive
methods opens some very interesting perspective for multimedia understanding.
The recent development of affordable hardware for this purpose should result in
widespread application of such applications in the near future.



Chapter 5

Description of Visual Media

Discusses fundamental properties of visual perception, including the represen-
tation of colors in color spaces and the extraction of edges by edge operators,
introduces feature transformations for the description of color information, tex-
tures and shape information.

5.1 Properties of Visual Perception

This chapter is about a classic of media understanding, known as content-based
image retrieval. The techniques introduced here have been developed over three
decades, and since numerous approaches were suggested over the years we can,
of course, only present a selection of outstandingly successful methods. Every-
thing discussed in the next sections is applicable to both images and videos.
The methods fall into three groups that name the three remaining sections: de-
scription of color, texture (surface properties) and shape information. Before
we discuss algorithms in the next three sections, we would like to introduce the
major properties of the human sense of vision in this section. We selected a
few important physiological properties and how they are modeled in media un-
derstanding. More information on the sense of vision can be found in Chapter
23.

Before we start with a systematic description we would like to give an exam-
ple. Figure 5.1 illustrates a holistic visual feature named visual keywords. The
description is simply made up from rectangular subregions of the media object.
Every rectangle is a visual keyword. The set of visual keywords represents the
media object. Visual keywords carry color information on the pixel level, tex-
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Figure 5.1: Description by Visual Keywords ( c© CNBC ).

ture information (i.e. information on the common properties of pixel groups)
and local shape information. The latter type of information, however, is usually
poorly represented by visual keywords due to random selection of rectangular
regions of the media object. The visual keywords approach was popular in the
late 1990ies. Its major strength is its simplicity. The major weakness is a ten-
dency to false positive matches. The figure gives examples. The arrows indicate
matches of media object and visual keywords. The dotted arrows indicate in-
correct matches. Such false positives can easily occur because the information
in visual keywords is often as redundant as in the media object. Still, the ap-
proach is regaining popularity – this time coming from the text domain where it
is known as the bag of words method. In visual information retrieval, it is now
called bag of features approach. See Chapter 14 for details.

Figure 5.2: Saccadic Scanning of Visual Content ( c© CNBC ).

We have started with this example, because it provides the floor for a discus-
sion of some fundamental properties of human visual perception. Large propor-
tions of the human brain are dedicated to the processing of visual information.
The type of information that matters most for human vision is contrast. Re-
search could show that the first stages of visual processing are concerned with
the detection and categorization of edges (i.e. contrast). This property distin-
guishes the sense of vision from the sense of hearing where harmonic patterns
are of the greatest interest. Following this insight the paramount success factor
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of visual keywords is to capture unique patterns of contrast in the media object
while neglecting its uniform parts. In this sense, the visual keywords in Figure
5.1 are well chosen.

A second important property of human vision is the way the input signal
is generated. The human eye is not able to capture a view like a camera that
takes a shot at one moment of time or like the compound eye of a fly that takes
multiple parallel images. It rather scans its environment and produces a steady
flow of information. This phenomenon is called saccadic seeing. Figure 5.2 shows
an example. The black lines indicate the movement of the focus of one eye over
time. As can be seen, high-frequency information is scanned more often than
areas of uniform pixel values. In particular, structures recognized by the sense
of vision are scanned in detail (e.g. the eyes). In consequence, small regions of
the image produce the highest proportion of the visual information stream. The
visual keywords approach can imitate this property of human vision if it is able
to capture the most relevant structures in the input object.

420nm (blue)
534nm (green)

564nm (red)

400nm (violet) 680nm (red)

Figure 5.3: Cone Responses on Wavelengths of Light.

The next property of human vision that we would like to discuss here is color
perception from wavelengths of light. The human eye has separate receptor
cells for brightness (rods) and three different wavelengths of color (cones). The
majority of these cells can be found on the fovea, the area around the optic nerve.
Since the rods outnumber the cones significantly our sense of seeing has a much
higher resolution for grayscale images. That is why ambitious photographers still
prefer this ’old-fashioned’ medium. The cones are sensitive to the wavelengths
illustrated in Figure 5.3. The perception of blue is well-separated from the
two others and maximal at a wavelength of 420 nanometers (nm). However,
perception of red has its peak at 564nm – less than 6% from the green peak.
This phenomenon is explained by the relatively late evolutionary diversion of
the non-blue cone into a green-receptive and a red-receptive cone. Of course,
during the majority of time of human evolution, the perception of green things
(in particular, plants) was significantly more important than the perception of
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red things. Today, the closeness of the green and red cones is responsible for
some forms of color blindness. In summary, our sense of color has three input
channels, namely the optical RGB (red, green, blue) nerve.

It is very pleasant for the computer scientist to see that the human eye
uses the same color model as a computer. However, two remarks have to be
made on this issue. Firstly, the highest sensitivity of the green and red cones
is not placed exactly at the wavelengths of pure green and red. In fact, red
perception takes place at significantly higher frequencies than 564nm. Secondly,
the three stimuli theory says that any base of three dimensions would be able
to provide a space big enough for the representation of all colors. The RGB
model is just one color model. Mathematically equivalent color models are the
HSV model, the YCrCb model and many others [348]. Please note that, though
mathematically equivalent these models have properties that make one for a
particular application more useful than the others. This practical usefulness,
however, is only of limited interest for media understanding, since we want to
extract information from the color information and this can be done from all
color models with three dimensions.

Blue

Green
Yel.

Red
Wh.

400nm

520nm

700nm

Figure 5.4: The CIE Color Space.

The three stimuli theory may appear surprising to the hobby physicist. Light
has the properties of particles since it is emitted in photons and the properties of
waves since the movement of these photons has a wavelength. Hence, it should
be possible to define a two-dimensional color space that covers human perception
fully. The CIE XY model – illustrated in Figure 5.4 – is such a color space. In
two artificial dimensions (that is, they have no semantic meaning) it defines
a color space with white in the center and the colors and color gradations in
the periphery of the so-called color sail. The outside of the sail is black. The
border of the sail corresponds to the wavelengths of the light ranging roughly
from 400nm to 700nm. As can be seen, the largest area is covered by tones of
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green. The success of the CIE model shows that the three stimuli theory defines
a sufficient criterion for color spaces that is beyond necessity. That is, the other
color models such as RGB contain redundant color gradations that cannot be
differentiated by the human eye. For media understanding of visual material
it is, therefore, highly advisable to convert the media objects into the CIE XY
color model before the feature transformation step is executed! From RGB to
XY the conversion goes as follows:

X = 0.431R+ 0.342G+ 0.178B (5.1)
Y = 0.222R+ 0.707G+ 0.071B (5.2)

One last aspect of human vision that we would like to mention here is re-
lated to the perception of texture and shape. In his interesting paper [126]
Goldmeier states that the foremost strength of human vision is to distinguish
the form (shape) and material (texture) of visual stimuli. The investigation uses
quantitative analysis of the results of psychological experiments where students
were shown figures with different shapes and textures and asked to rate their
similarity. Our distinction of texture and shape can, therefore, be regarded as
somewhat natural, since the human brain – a product of evolution – has come
up with the same distinction.

We would like to close this section with a few notes on technical properties
of visual media objects. It is certainly beneficial to keep them in mind when
designing a media understanding application for visual media.

1. The lower resolution of video frames is not necessarily a disadvantage in
visual feature transformation. Color descriptions and shape descriptions
can be computed faster. Rather, a problem is the – often – reduced color
depth provided by video cameras. The higher resolution of images is an
advantage, however, for the description of textures. In consequence, it
appears advisable to start color and shape extraction from images with a
pre-processing steps that reduces the resolution.

2. Visual stimuli are compositions of objects. A major factor influencing the
complexity of such compositions is whether or not the objects are rigid. If
yes, more detailed representation may make sense than if not, because the
higher variability of non-rigid objects introduces a source of noise that can
be reduced in magnitude by coarse representation (i.e. reduced resolution).

3. Perspective is another influence factor on the composition. It is important
for successful feature transformation to take into account under which
perspectives the objects in the composition may become visible. Again,
the more degrees of freedom exist, the more general the description should
be in order to be useful for categorization.
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4. The last two items on this list have already referred to the general problem
of noise, distortions and missing data. Visual perception is exceptionally
prone to occlusions. If parts of the composition are not visible, the in-
formation is simply lost for the description process. One remedy for this
problem is localization of the descriptions. That is, to apply the feature
transformation not on the entire media object, but on regions within the
media object that are unlikely to be occluded. Visual keywords is one
stochastic attempt to achieve this goal.

The art of media understanding is to avoid these problems where possible
and to minimize their influence where they cannot be avoided. Below, we intro-
duce feature transformations that have proven successful in this respect. The
remainder of this chapter is organized as follows. The next section introduces
feature transformations based on color information. Section 5.3 discusses the
description of texture properties. The last section introduces general concepts
for shape description.

5.2 Color Descriptions

One of the outstanding abilities of human beings is the perception of color.
Color allows us to recognize and distinguish objects. Without color, some of
our finest achievements, in particular, the visual arts would only be of little
significance. It is therefore hardly surprising that the representation of color
is of highest importance in visual media understanding. In this section, we
introduce methods for the extraction of dominant colors, color distributions and
local color properties. Most of these methods were already developed in the
1990ies – for media understanding very long ago, but since they are easy to
compute and efficient to employ, they are still used today. Some of the methods
were standardized in the MPEG-7 standard [243]. We give a brief description of
these feature transformations and estimate the quality of their descriptions.

Before we start describing the feature transformations it is worth noting that
– though the domain appears different – the methods used here are actually very
similar to those used on audio and other data types. In the last chapter, we intro-
duced the short-time energy feature transformation as a sequence of windowing,
sample-wise elimination of the sign and summarization of these values. The
same steps are usually taken in the visual domain. Windowing is some kind
of localization, a method discussed in this section and, generally, in Chapter
14. The elimination of the sign is an example for quantization, i.e. the general
transformation of the samples. The last step is an example for aggregation. That
is, the samples are merged into a few values with statistical properties suitable
for media descriptions. Below, we will see that the same steps are taken in the
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visual domain. Please refer to Chapter 11 for a thorough investigation of the
building blocks of media understanding.

Source Black White

Figure 5.5: Example of a Luminance Histogram ( c© CNBC ).

The most frequently used color descriptor is the color histogram. The idea
is very simple. First, we define a set of colors (e.g. white, gray, black; red,
yellow, white, green, blue, black). Then, each pixel of the visual media object
is assigned to the color bin (e.g. white) with the highest similarity. Figure 5.5
gives an example where the pixels in the source image are aggregated in a color
histogram of gray values. The resulting distribution is called a histogram. The
general algorithm for the function introduced in Section 3.4 may be written as
follows:

function color_hist takes x begin
z=()
foreach l in L(x) do

y := quant_col(x(l), GRAY)
z(y) := z(y)+1

endfor
return z

end

Here, x is a (fraction of a) media object. The locations l are drawn from the
media object’s location set L(x). Observe that the loop implements a localization
operation. The pixel colors are quantized into y and the histogram z aggregates
the quantized data. The quantization function for the transformation of pixel
values into distinct colors may be defined as follows:

function quant_col takes x, y begin
if y = GRAY then

z := 0.6 * chn(o,RED) + 0.3 * chn(o,GREEN) +
0.1 * chn(o,BLUE)

elsif y = RAINBOW then
z := get_hue(x)
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elsif y = ...
...

endif

return round(z,8)
end

This function creates a color value rounded to 8 bits of accuracy. If the
second parameter requests grayscale the output is a luminance value, and the
computed color histogram is actually a luminance histogram. If the option
RAINBOW is selected the resulting color histogram resembles the scalable color
feature transformation of the MPEG-7 standard. This transformation extracts
a color histogram of 256 bins from the HSV color space (hue, saturation, value).
The final description is cleverly quantized and transformed by Haar wavelets
(see Chapter 12). However, it is essentially still a color histogram.

The second color feature to mention extracts the dominant colors of a media
object. Dominant colors are those that are present in many pixels and arranged
in cohesive blocks. Semantically, dominant colors are related to the loudness of
audio. The short-time energy feature transform, for example, is only relevant
where a significant difference in loudness between different sounds appears. Like-
wise, the dominant color feature transform is only relevant where some colors
are of outstanding importance.

As suggested in Section 3.4 a simple form of this feature transformation can
be based on the color histogram by selecting the three colors with the highest
histogram entries as the dominant colors. This approach, however, does not
take the cohesion of pixels into account, even though cohesion is of paramount
importance for human perception of dominant colors. An advanced approach
will, therefore, take the object structure into account – for example, in the
following way:

1. Initialize an empty color histogram

2. Perform a color-based segmentation of the input object

3. For each cohesive region:

(a) Compute the average color

(b) Count the number of pixels

(c) Add the squared sum of pixels for the average color to the color
histogram

4. Select the three largest bins as dominant colors
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In this approach, colors are associated with regions and the influence of great
regions is emphasized by the square function. Therefore, the dominant colors
will be those that appear in large unicolor regions. Color-based segmentation,
by the way, is discussed in the last section of this chapter.

The MPEG-7 standard provides a dominant color feature transformation as
well. This function computes the percentage of pixels of a particular color as
well as the variance with respect to the average of each color. The results are
quantized to n bins.

The MPEG-7 standard suggests two more color feature transformations:
color layout and color structure. Color layout first applies a localization function
by segmenting the input object into 64 equally sized areas. For each area, the
average color is computed. Eventually, the result is transformed by the two-
dimensional cosine transform. Color layout is, therefore, a spectral feature –
see Chapter 13 for more. The result is only nominally a color description. In
his earlier work, the author could show that, actually, color layout is a splendid
texture feature [85].

The color structure feature transformation employs a special color model
named HMMD that is actually related to the HSV model. Since it has four
channels the HMMD color model is in comparison to the CIE model very redun-
dant. Color structure first transforms the input object into the HMMD space.
Then a color histogram of 184 colors is populated by counting color averages
over a moving grid of pixel locations. The resulting description is very sensitive
to the distribution of colors. In particular, colors evenly distributed over large
areas of the media object will be strongly represented in the color structure
description.

The latter two feature transformations are examples for the attempt to lo-
calize color information. Color histograms and dominant color descriptions that
are extracted from entire media objects are called global descriptions. Global
information is of interest if the media objects under consideration show simple
compositions, i.e. if they do not contain complex objects and object relation-
ships. Since most practically relevant scenarios are not based on simply struc-
tured material global color information is only of limited use. On the other
hand, local descriptions such as, for example, the color histogram of a particular
element in a media object can be very effective in describing the information in
a media object. Since color was one of the first cues to be investigated in visual
media understanding, it was attempted to solve the problems of localization and
color description together. The result were feature transformations like color
layout and color structure. Modern feature transformations, however, separate
the localization problem from the color description problem. Approaches for
localization are discussed in the last section of this chapter and in Chapter 14.

The MPEG-7 standard for content description was a major step forward for
visual media understanding since for the first time it defined content-based fea-
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ture transformations for image and video material. Shortly after release of the
standard the author investigated the data quality of the resulting descriptions.
As already mentioned above, he could show that some feature transformations
do not provide the type of description intended while others are highly redun-
dant. See [85] for details. However, despite their shortcomings, the color feature
transformations of the MPEG-7 standard are today popular choices for many
media understanding problems.

In summary, the two major color descriptions are the color histogram – either
global or somehow localized – and dominant colors. Investigated by the raster of
the fundamental problems of media understanding these color descriptions have
in advantage that they are often of low dimensionality, that their extraction does
not require a large set of parameters, that it be performed efficiently and that
noise and distortions do not play an important role in the extraction process.
On the other hand, the gap between a color histogram and the semantics of
the content is usually significant. Methods to bridge this gap include localiza-
tion on the object level and joint usage of color descriptions with other visual
descriptions, for example, texture descriptions.

5.3 Texture Description

What is texture? One possible answer would be that texture is the statistical
description of the visual sensation created by light reflected from the surface of
some scene – hard to understand, but the expert will still find it unsatisfactory. A
better way is to look at examples. Figure 5.6 shows some from the Brodatz data
set commonly used for the evaluation of texture feature extraction methods.
The leftmost pair of images shows the difference between a fine and a coarse
texture, referred to as coarseness. The second pair differentiates between regular
and irregular textures (regularity). The last three refer to the directionality of
textures: the first image is vertically structured, the second one diagonally and
the third one is non-directional.

fine coarse regular irregular vertical diagonal non-
directional

Figure 5.6: Brodatz Textures.

Coarseness, regularity and directionality are three very important properties
of textures. It is, therefore, the goal of visual feature extraction to represent
these three properties in descriptions. The methods introduced in this section
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were designed for this purpose. Before we do that, however, a few remarks have
to be made. Firstly, like the audio and color feature transformations discussed
above, texture feature transformations employ the same building blocks, namely
localization, quantization and aggregation. We will make this transparent in
examples below.

uniform Edge coarse med. freq. low freq.

Figure 5.7: One- and Two-Dimensional Texture Examples.

Secondly, practice is unlike theory – also for textures. Figure 5.7 illustrates
some textures extracted from the leading example together with the associated
waveform. None of these textures has a clear direction. The coarseness is dis-
putable and regularity degenerates partly to uniformness. The waveforms show
that what we call a distinct texture is actually mostly a derivation of small mag-
nitude. The only exceptions are edges that create an immediately recognizable
wave pattern. Hence, what we are mostly looking for in texture feature transfor-
mation are delicate fluctuations of the signal that can – unfortunately – easily
be confused with noise.

Thirdly, we would like to point out the semantic similarity between visual
texture extraction and rhythm detection in the audio domain. Both concepts
are best described in statistical terms as the precision of appearance of recur-
ring patterns. Like a rhythm has a beat pattern with characteristic amplitude
peaks, a texture has a basic pattern with characteristic luminance peaks that
reappears – slightly varied – over space like the rhythm pattern reappears over
time. The fundamental problems of texture recognition are, therefore, the same
as for rhythm detection:

• Identification and description of the basic pattern

• Tracing of the fundamental pattern over space

• Description of the trace in terms of variance

It is not surprising that the methods employed to solve this problem resemble
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those employed on rhythm detection.1 Below, we discuss simple statistical mod-
els as well as autocorrelation and the application of density estimation methods.
All of these methods have in common that they neglect color information. We
assume that the visual stimuli are given gray-scaled, for example, transformed
as introduced in the last section.

Given a gray-scaled image x, i.e. a matrix of cardinal numbers, some simple
statistical moments of the texture can be extracted by the formulae given below.
The measure xe expresses the energy represented in the image. If combined with
localization (e.g. to 16x16 subimages) and aggregation this measure is equivalent
to the short-time energy extracted from audio samples. The values xm and xs
are just the first two statistical moments mean and variance.

xe =
∑
l∈L

x(l)2 (5.3)

xm =

∑
l∈L

x(l)

|L|
(5.4)

xs =

√√√√√
∑
l∈L

(x(l)− xm)2

|L|
(5.5)

These measures do not yet measure coarseness, regularity and directionality.
For this purpose, we suggest the following approaches.

• Coarseness can easily be estimated by comparing the statistical moments
for the given visual stimulus at the full resolution with the same moments
at reduced resolutions. The longer the moments remain constant at down-
sampling the coarser the texture is.

• Regularity can be measured by localization and aggregation. If the sta-
tistical moments remain similar in, say, 16x16 subimages of the original
stimulus the texture may be considered regular. If the variance of the
moments is significantly above zero, it may be considered irregular.

• Directionality can be measured by employing the regularity algorithm on
specific directions. Vertical directionality can, for example, be detected by
computing the variance of the statistical moments for vertical neighbor-
hoods (columns of subimages). If the variance is close to zero, we may
assume vertical directionality.

1And the other way around! Most of what we discuss here has a perspective to be employed
on audio as well.
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These moment-based feature transformations are just examples. Others do
exist. For example, the Tamura features were very popular during the 1990ies
[363].

Another form of statistical description of textures is interpreting them as
Markov Random Fields (MRF), i.e. as nets where each pixel is a state and lumi-
nance changes are regarded as probabilistic state changes. In consequence, the
input stimulus can be employed – as any MRF – in order to train a density of con-
ditional probabilities (state changes), for example, using Gibbs sampling. The
resulting density function is a description for the texture of the input stimulus.
See Chapter 9 for more details on probabilistic models and density estimation.

Above, we stress the similarity of rhythm detection and texture description.
It is, therefore, not surprising that autocorrelation – of paramount importance in
linear predictive coding – is also a strong method in texture description. Given
a framework of variable-sized windowing and a convolution operator, coarseness,
regularity and directionality can be described as follows:

• Coarseness can be measured by computing a correlogram for varying win-
dow sizes. The level with the highest autocorrelation is a measure for the
coarseness: The higher the level, the coarser the stimulus.

• Regularity can, likewise, be measured by a correlogram simply by detecting
the peaks in the correlogram. If few high peaks exist, the texture may be
regarded as regular. Otherwise the stimulus may be regarded an irregular
random signal.

• Directionality can be measured by computing correlograms for the direc-
tions of interest – like in the approach based on statistical moments. If
peaks exist, the texture may be regarded as directional.

One particularly interesting holistic texture model based on autocorrelation
is the simultaneous auto-regressive (SAR) model. In the SAR model, the gray
values of the input stimulus x are transformed as follows:

x(l) =
∑

y∈θ(x,l,Lmoore)

w(y).x(y) + n(l) (5.6)

Here, y are the neighboring locations of location l. The function w(l) weights
neighboring gray-values and can be used to make the model sensitive to partic-
ular directions by defining symmetric waves perpendicular to the direction of
interest. The last term is a Gaussian noise term optimized from training data
(e.g. by squared error minimization). The SAR model is auto-regressive. The
process has to be repeated layer-wise until all output values x(l) are stable.
Then, the entire output is a description for the texture of the input image. That
is, different texture characteristics cause different SAR models. The SAR model
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can be extended by applying it at different scales and on rotation-invariant stim-
uli. Scale invariance and rotation invariance are discussed in Chapters 14 and
12, respectively.

The MPEG-7 standard defines two texture feature transformations: homoge-
neous texture and texture browsing. The first rotates the input stimulus in steps
of 30 degrees and applies a two-dimensional Gabor wavelet transformation (see
Chapter 12). The coefficients are cleverly quantized in order to provide an ex-
pressive description. This approach to texture description follows the idea that
the coefficients of integral transforms express a texture-like property. Above we
declared that MPEG-7 color layout acts statistically more like a texture feature
transformation. This is due to the application of a sine-based integral transfor-
mation on pixel values. MPEG-7 texture browsing employs a scheme similar to
homogeneous texture, but condenses the description to just twelve bits describ-
ing coarseness, regularity and directionality in four bits each.

In summary, texture description can be based on a variety of methods. We
discussed statistical moments, joint densities, autocorrelation and integral trans-
forms. In fact, many more approaches were developed – in particular, before
the Millennium. Today, the MPEG-7 methods appear to be the most popular
though, for example, the SAR model has proven very effective in the past. The
introduced statistical models can be implemented efficiently and are, therefore,
of interest for applications with limited resources (mobile setups) or broadband
data (video).

5.4 Description by Shapes and Spatial Relation-
ships

Shape is the third major visual cue next to color and texture. In this section, we
define the shape of an object as its contour, i.e. the contrast between the object
border and the object background. Obviously, in complex scenes, occlusions
occur and the point of view causes distortions of the shape. In media under-
standing, these problems are considered types of noise that influence the shape
description negatively. The elimination of this type of noise goes far beyond the
methodology of media understanding. Such methods are developed in computer
vision (see, for example, [348]). Therefore, we limit ourselves to the as good as
possible extraction of the visual part of the shape border without the correction
of distortions.

The edge perception of primates has been investigated since the 1960ies [164].
Figure 5.8 illustrates two major findings. After stimulation of the receptor cells,
one of the first operations is to distinguish edges, i.e. dark/light contrast. Edges
are distinguished by their angle and by their length. The length is at least
categorized in two classes: short edges that end within the field of view and long
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c1

c2

Figure 5.8: Human Edge Perception and Categorization.

edges that do not. In later processing steps, edge lengths are categorized by
their length at a fixed step width. Human visual perception is largely based on
this stream of edge information. These results are interesting for us, since the
shape description is, likewise, based on edge detection. The cognitive findings
justify the methods introduced below, because human visual perception is an
extraordinarily powerful tool.

All feature transformations introduced in this section are based on edge ex-
traction. Hence, we will discuss this problem first. Then, we explain transfor-
mations based on statistical moments, aggregation and other methods.

The purpose of edge extraction algorithms is to identify all points in a visual
stimulus that belong to the border of an object, i.e. a contour with significant
contrast. Since the 1960ies, a variety of methods have been proposed to solve
this problem. Splitting and merging of similarly colored groups of pixels is one
approach. Eliminating all pixels below a certain luminance threshold is another.
One very powerful approach is based on correlation of the gray-scaled input im-
age with pre-defined edge operators. Typically, such operators are 3x3 matrices
with, for example, the following content:

osobv =

1 0 −1
2 0 −2
1 0 −1

 ; osobh =

 1 2 1
0 0 0
−1 −2 −1

 ; olap =

1 1 1
1 −8 1
1 1 1


The first two matrices define the Sobel operator. The third defines the Laplace

operator. The first matrix is sensitive to vertical edges, the second to horizontal
ones and the third to isolated points. See Chapter 14 for applications of the
Laplace operator. A typical edge segmentation algorithm based on the Sobel
operator can be defined as follows:

1. Convert the input stimulus to gray scale
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2. For every non-border pixel do:

(a) Convolute the Lmoore neighborhood with the two Sobel matrices:
y = o⊗ Lmoore

(b) If the convolution sum exceeds a pre-defined threshold replace the
pixel value with value ’1’ otherwise ’0’

The result is a binary image of non-zero edge points. Typically, the result
is refined by eliminating all isolated points as well as very short edges, etc.
Possibly, the algorithm can be employed on different scales. Then, only those
locations are considered edges that are non-zero on n% of all scales – which is
an application of belief.

Source Sobel Zero Crossings Canny

Figure 5.9: Comparison of Edge Operators ( c© CNBC ).

Figure 5.9 compares a few edge extraction algorithms based on this scheme.
The leftmost image shows the source, the second the output of the Sobel oper-
ator. The third algorithm considers edges at zero crossings of the image infor-
mation while the rightmost image shows the output of the canny edge operator,
an algorithm that performs several optimization tasks along with the correla-
tion procedure. As can be seen the canny edge operator deserves its name, it
produces the best results. It requires, however, also the most resources and is,
therefore, only applicable under ideal circumstances. The Sobel operator is usu-
ally considered to provide the best trade-off between quality of the result and
execution time.

Once the edge map has been extracted, it can be used to either directly gen-
erate a shape description or to segment the input image. An example for the first
option is the MPEG-7 edge histogram feature transformation. This algorithm
employs simple 2x2 operators in order to extract horizontal, vertical, diagonal
(two types) and non-directional edges. In the second step, each point is added
to a histogram with five bins depending on whether or not it belongs to an edge
of the corresponding category. The edge histogram is typically localized to 4x4
subimages and computed on the level of macroblocks. In the above-mentioned
statistical evaluations of the MPEG-7 standard, the author could show that the
edge histogram provides very useful descriptions for all sorts of visual material.
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A similar approach to the edge histogram would be the application of the Hough
transform that is discussed in Chapter 12.

Figure 5.10: Principle of Energy-Based Contour Models ( c© CNBC ).

The edge map can be employed for object segmentation in various ways. One
simple approach is to focus on closed lines in the object map only, remove all
other edges, fill the remaining areas and perform a logical AND-operation with
the source image, which results in the segments of the original image. Addi-
tionally, almost-closed contours can be completed by some image enhancement
algorithm.

Another more sophisticated group of approaches for image segmentation that
are based on the edge map are energy models, for example, the active contour
model. Here, the idea is to transform the edge map into a parameterized model
that can be employed on the source image for object segmentation. All energy
models try to minimize the opposing forces present in the model. Figure 5.10
shows an example where the model is a circle. In the active contour model, the
two major forces are:

• The degree of fit of the model. In the figure, for example, the dotted line
fits better to the object than the dashed line.

• The degree of deformation of the model. In the figure, the dashed line is
less deformed than the dotted line.

The optimization process of the energy model tries to find an equilibrium be-
tween these forces. The resulting model can be employed for object segmentation
or directly as a contour-based object description.

If the edge map or some model is used in order to extract an object from the
input stimulus, we have again two options. The segmented object can be used
directly as a description – like a visual keyword, or another feature transforma-
tion can be applied in order to arrive at an invariant shape description. For this
purpose, shape moments and statistical moments are frequently used. Typically
employed shape moments include:
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• The size and aspect ratio of the minimum bounding rectangle around the
object.

• The length of the border of the object.

• The ratio of object size and border length as a measure of its circularity.
The larger the ratio the more circular an object is.

• The number of holes in the object, i.e. the number of smaller objects fully
embedded in the object

Many more shape moments do exist, but these are the most frequently used
ones. Typically employed statistical moments are the moments of first, second
and third order: mean, standard deviation, skewness. However, tailor-made sets
of moments exist that outperform the standard moments. One example for these
sets is the set of Hu moments. For an object o the first four Hu moments µ1−µ4

can be defined based on the central moments αp,q as follows:

αp,q =
∑
l∈L(o)

(l(x)− lc(x))p.(l(y)− lc(y))q (5.7)

µ1 = α2,0 + α0,2 (5.8)

µ2 = (α2,0 − α0,2)2 + 4α2
1,1 (5.9)

µ3 = (α3,0 − 3α1,2)2 + (α0,3 − 3α2,1)2 (5.10)

µ4 = (α3,0 + α1,2)2 + (α0,3 + α2,1)2 (5.11)

Here, l(x) represents the x component of location l and lc is the location of
the center of gravity in the visual object. In total, seven Hu moments do exist.
However, the first four already provide a fair object description.

Alternative to the description by moments, object segments can be described
by the coefficients of some transformation. The MPEG-7 region-based shape
descriptor employs the Angular Radial Transform (ART, see Chapter 12). The
ART defines a set of 32 two-dimensional circular sinusoid objects that are each
convoluted over the input image. The resulting coefficients constitute a very
useful object description. The ART is particularly successful in the recognition
of quasi-circular objects, e.g. faces.

A typical description of all shapes will be composed of some set of shape
moments for the n largest objects. The number of objects present in a scene may
vary widely, but as stated above, descriptions must be of fixed length in order
to be utilizable for efficient categorization. However, the categorization need
not only be based on the object content but also on the spatial relationships of
the objects. One simple approach is the so-called 2D string. The basic idea is
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very simple: A 2D string is a symbolic representation of object relationships in
horizontal and vertical direction with respect to some origin.

An example makes it clear. Suppose we have identified four objects in a face
image: left eye (A), right eye (B), nose (C) and mouth (D). The 2D strings for
these objects would be defined as follows:

u = A,CD,B
v = AB,C,D

If we consider the origin of the space in the upper left corner, the strings u, v
(traditionally, used for x, y dimensions) express that object A comes horizontally
before C and D, and C and D come before B. Vertically, A and B are located
at the same position, then comes C and finally D. 2D strings express the spatial
relationships of objects very efficiently. However, they require semantic labeling
of the objects, otherwise the strings become arbitrary. The categorization of 2D
strings can be performed like the categorization of any symbolic media objects.

In conclusion of this section, we would like to stress the importance of so-
phisticated object segmentation for visual media understanding. Object seg-
mentation is the most important pre-processing step for the extraction of other
descriptions such as color, texture and localized information. Without proper
object segmentation, unrelated content may be mixed into one description, which
is obviously not desirable. Object segmentation, however time-consuming, im-
proves the quality of the media understanding process dramatically.





Chapter 6

Description of
(Quasi-)Symbolic Media

Discusses the differences of symbolic and quantitative sample types, introduces
the term quasi-symbolic, describes feature transformations for stock data, text
and bioinformation, and identifies analogies between these methods.

6.1 Symbolic Media Types

In the last two chapters, we have introduced methods for feature extraction
from audiovisual media objects. These types of media are based on quantitative
samples. In this chapter, the situation is different. The media objects considered
below use a symbolic carrier. It is, therefore, necessary to reflect (in this section)
whether or not it makes sense to apply the concept of feature transformation
on symbolic media objects. Since our answer is a clear yes, then, in the three
following sections, we discuss feature transformations for stock data, text and
bioinformation.

Even in the quantitative domain we have already encountered symbolic con-
cepts. The 2D strings employed for shape description represent a symbolic de-
scription of the spatial relationships of visual objects. Of course, this concept
could, likewise, be applied on any other type of media that may be composed
– spatially, temporally or along some other set of dimensions – of events. The
symbols of 2D string are the named events (e.g. shapes) encapsulated in media
objects. In this sense, every template or model is actually a symbol in some sign
language. The discussion thread leading from here to semiotics will be followed

99
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in Chapter 22. The technical discussion of template-based event recognition is
the topic of Chapter 24. Furthermore, we have already introduced the ADSR
sound model. The sequence of attack, decay, sustain and release is a bridge for
crossing the semantic gap from windows of quantitative samples to symbols of
sound. The question now is, does it make sense to carry the process even further,
that is to extract more specific descriptions from the symbolic representation?

As we discussed in Chapter 2, the major difference between media objects as
aggregates of quantities and media objects composed of symbols is the neighbor-
hood concept. In quantitative media objects, neighboring samples are related
(redundant). That is, the local function is to some degree smooth (though, of
course, there is no strict smoothness in the discrete domain). The crux now lies
in ’to some degree,’ an expression not yet precisely defined. If the proposed de-
gree of smoothness is not met by a type of media, the samples are interpreted as
symbolic otherwise quantitative. In consequence, every media type with a weak
concept of neighborhood may be regarded symbolic – even though the basis of
the samples may be measurements. In the next section, we will give a detailed
investigation of one particular type of media – stock – that may be considered
as symbolic as quantitative. We call this phenomenon quasi-symbolic.

The scale of quantitative, quasi-symbolic, symbolic is not just relevant for
the description of media types but in fact, for all data objects produced in the
media understanding process. Descriptions, for example, the zero crossings val-
ues of some piece of music, are rather quasi-symbolic than quantitative, since the
meaning of neighborhood (extracted from neighboring windows) is limited. After
categorization, the resulting predicates are certainly binary symbols expressing
the membership relation to some semantic class. Hence, media understanding
can also be defined as a process away from quantitative towards symbolic repre-
sentations of digital media.

In the discussion of the properties of media types, we counted in favor of
symbolic media that they are less prone to noise. That is generally the case,
simply because the limited set of possible sample values acts like a multi-stable
system (a function of many local optima), i.e. it is rather unlikely that a record-
ing error leads to false categorization. It is much more likely that despite the
noise, the correct local optimum (symbol) is associated with the measurement.
However, this reasoning is not true for the products of media understanding,
namely descriptions and predicates. The transformation and categorization pro-
cess may convert the noisy measurements into even more noisy descriptions (by
unintentional emphasizing of the noise component) and eventually, completely
wrong predicates. Therefore, symbols created by a media understanding process
have to be regarded with caution.
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Two general approaches to feature transformation of symbolic media objects
are thinkable:

• Lossless transformation

• Lossy transformation

Of course, both approaches are lossy in the sense that the generated descrip-
tions contain fewer symbols than the original media objects. The distinction
refers to the semantic content of the media objects. Two examples from the text
domain should make the distinction clear. Considering the phrase ’Yesterday,
the shares of IBM went up by ten points’ a lossless transformation would be the
elimination of the flexion of the verb. ’Yesterday, the shares of IBM go up by ten
points’ has the same semantic content as the original sentence. However, if the
temporal adverb was removed from the sentence, less semantic content would
remain. In ’The shares of IBM went up by ten points’ we do not know if this
event occurred yesterday, today, this week or within the last year. Therefore,
this transformation has to be categorized as lossy.

When should we use lossless transformations, when lossy? Theoretically, the
first form is always superior. Of course, we do not want to loose semantics
in the feature transformation process. We rather want to free the semantics
from all the irrelevant (with regard to some query) parts of the media object.
Practically, this goal is hardly achievable. If a feature transformation is defined
cautiously enough not to lose any semantic content, it will probably preserve
large parts of the irrelevant content. Actually, this problem is based on the
same trade-off as the problem lossy/lossless media compression: The more lossy
the transformation the more efficient the description but the higher the risk of
losing valuable information. Below, we introduce feature transformations that
represent a reasonable – empirically proven – balance between efficiency and risk
of loss.

The three remaining sections investigate one type of data each. In the next
section, we discuss feature transformations for the quasi-symbolic nature of stock
values. Then we move to the text domain. Eventually, we combine the methods
introduced for stock values and text for the application on bioinformation.

6.2 Description of Stocks

Technical stock analysis has a clear goal: Prediction of the future. In contrast
to all other media understanding problems considered in this book, we are not
interested in indexing of the media content for content-based search but, ex-
clusively, in the projection of past patterns into the future. Therefore, most



102 CHAPTER 6. DESCRIPTION OF (QUASI-)SYMBOLIC MEDIA

methods of stock analysis employ some kind of predictive coding (for example,
linear regression, moving averages, etc.).

The fundamental problem of stock analysis is as clear as the goal. Stock
signals are not smooth and barely predictable, in fact, close to a random walk,
i.e. the values of the future hardly depend on the past. The typical model
of the stock signal is a so-called Wiener process. In a Wiener process, each
sample is the sum of two components. The first one is a weighted average of
the last n samples (in the simplest case, the last one). The second component is
a random number drawn from some normal distribution. The first component
reflects the hope that the stock signal is indeed more than just a random walk
while the second models all external and internal influences on the value of
shares. That is, the component drawn from the normal distribution summarizes
all pieces of information that trigger buying and selling operations. Compressing
all information in just one value causes high polysemy, i.e. the sources causing a
particular change are no longer recognizable. Therefore, polysemy is the one of
the fundamental problems of media understanding that is most relevant in the
stock signal domain.

Obviously, the random walk component of stock signals makes prediction
hard to achieve. In fact, the predictability depends on the weight of this com-
ponent relative to the average of the last n samples. The higher this weight is
the harder the prediction is to achieve, or the smaller is the belief in any pat-
tern that may reveal the future development. Hence, stock understanding makes
sense in imperfect markets with limited information and few players. Markets
close to perfection should maximize the random walk component and, therefore,
render technical stock analysis impossible. Below, we introduce feature transfor-
mations for stock data that provide descriptions usable for powerful prediction
of imperfect markets.

We consider stock signals quasi-symbolic. This judgment may appear sur-
prising since stock data is usually visualized in graphs (though symbolic rep-
resentations exist as well). Our reasoning is the following. Charts make sense
if high-bandwidth data are available. In our context, if an analyst is provided
with updates of stock values per minute (or, per second), the stock function
becomes a smooth signal. Then, visualization and visual prediction make sense.
However, if only low bandwidth data are available, say, one sample per day, the
signal resembles a very crude Wiener process where visualizations are not of
practical use anymore.

For an example, please refer to Figure 6.1. The first and second charts show
(quasi-)symbolic data, namely some investment funds and the GenBank sample
gene string introduced in Chapter 3. The latter signal was turned into a graph
by associating the characters standing for the amino acids with particular delta
values (changes of the signal). For example, we associated alanine (A) with a
value of −0.024. That is, every occurrence of an A in the protein representation
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Stock

Bioinfo

Music

Figure 6.1: Delta Characteristics of Stock, Bioinformation and Music.

is visualized by a small decline. The actual values chosen for the individual acids
are – since there is not a strong neighborhood relationship between amino acids
– irrelevant. Important is only that each acid is associated with a distinct value
and that all values are drawn from the same interval. The result is a typical
random walk. The bioinformation chart does not reveal any interesting pattern
(on first sight).

Surprisingly, the delta values of the stock data do not look much better. We
used the day by day changes of some real investment funds to generate this
chart. The result should reveal some pattern, but in the contrary looks very
much like the bioinformation chart. The reason lies in the coarse sampling of
stock data available to the public. One value per day is not much more than a
random walk. In contrast, the third chart shows the delta values of some piece
of music. The deltas are still close to a smooth signal and, therefore, express
patterns that exist in the data.

The practical transformation of quantitative stock data to symbols is actually
a media understanding process. In the first step, the stock values have to be
described by delta values. In the second step, the delta values are categorized as
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symbols. Various reasonable approaches are thinkable. We suggest the following
algorithm:

1. Define an alphabet of n symbols.

2. Compute the delta values of all pairs of samples.

3. Build a density function (histogram) for the delta values.

4. Associate each symbol with an equal-likelihood interval of the density func-
tion.

Each delta value belongs to one particular symbol defined by an interval.
With this algorithm, each symbol has the equal likelihood of appearance.

The following example shows a symbolic representation of the stock data
visualized in Figure 6.1. We use the abbreviations used for amino acids in the
genetic code as our alphabet. Using the algorithm above, the first values given
in the figure equal this string:

KQKCFYKFEICSNAMQSHTPVENLINDGSKYYTCRGRHIRPSMYQTSFNESASVCERMT
HTFTHYNQYFDGHCLDDIADGSYQLFKMGHYANVYMKARNNYGAEVSWAVPGEEECFLH
VASDDEGSVDKYHKRCVFTIASNTNMMLTFPMKWDKLCIFCPSLMTNNAFQENGPKRSH

In comparison, the original gene string of the bioinformation curve given in
the figure has the following form:

MTQLQISLLLTATISLLHLVVATPYEAYPIGKQYPPVARVNESFTFQISNDTYKSSVDK
TAQITYNCFDLPSWLSFDSSSRTFSGEPSSDLLSDANTTLYFNVILEGTDSADSTSLNN
TYQFVVTNRPSISLSSDFNLLALLKNYGYTNGKNALKLDPNEVFNVTFDRSMFTNEESI

For human cognition, again, no big difference is visible in the symbolic repre-
sentations of stock and bioinformation. Of course, the distribution of symbols is
different – but this piece of knowledge comes from the transformation algorithm,
not from visible patterns.

Now, why should we prefer the symbolic description of stock data from the
quantitative one? The three most important reasons are:

• The quantitative representation may mislead the analyst to approaching
the prediction problem numerically – for which the data basis is insufficient.

• In the domains of text understanding and bioinformation analysis powerful
methods for symbolic pattern analysis have been developed that can, with
minor adaptations be applied on symbolic stock data.

• The principles of most of the quantitative methods applied on stock today
can more efficiently be expressed in symbolic terms.
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In conclusion, using a symbolic representation for stock data opens the door
for new methods and speeds up the prediction process.

Still, the discussion of feature transformations for stock analysis that follows
now will start with classic quantitative methods. Then, we will discuss how some
of these methods can – more efficiently – be implemented in the symbolic domain.
In combination with the remaining sections of this chapter and the chapters on
the categorization of symbolic descriptions these descriptions provide a powerful
toolbox for symbolic stock analysis.

Figure 6.2 visualizes some important descriptions used in technical stock
analysis. The trendline in the upper part is the result of linear regression, i.e.
the line minimizes the squared errors given the samples. The lower left part of
the figure shows a moving average over the last ten samples.

Trendline and moving average are examples for statistical moments. That is,
the entire pool of samples is condensed into a few representative values (descrip-
tions). Many other such financial ratios do exist. The advance decline value, for
example, is the ratio of the aggregated values of all rising and falling stocks on
one day. The relative strength of a paper is the ratio of this paper compared to
the market, etc. Eventually, the volume of a market is another interesting data
series. From the trading activities, further moments (e.g. mean over time) can
be drawn.

Generally, most other moments introduced for audiovisual description above
could be used to describe quantitative stock. The short time energy, for example,
should provide information similar to aggregated advance decline values. The
zero crossings rate of the delta values resembles the so-called momentum of a
market. Even logarithmic hearing (introduced in Section 4.1) has an equivalent
in stock analysis. In markets with large deltas, the logarithm is used to scale the
data to human understanding. In markets with small changes the exponential
function (inverse logarithm) is employed to provide the opposite effect.

Returning to Figure 6.2, the lower central element is a so-called triangle, i.e.
a pattern where ascent and decline are of equal size. The last two elements are
resistance and support lines. The support line is a minimum not undercut over
some amount of time. The resistance line marks a peak not exceeded for some
amount of time. Many other similar patterns do exist (rectangles, flags, cups,
etc.).

Such descriptions can efficiently be expressed in symbolic terms. Consider
a simple alphabet of just three symbols: {a, b, c} where a stands for ascent, c
for descent and c for no change. Then, a small triangle can be expressed by the
string aaaaaccccc. If we have one symbol per day (aggregations are simple) this
triangle would span over ten days. A resistance line could be expressed by a
maximum length pattern aaaaaa that may not be exceeded. Other descriptions
could be provided in similar fashion. Such patterns, in particular, applied on
a smoothed signal, simplify the identification of interesting structures (e.g. by
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Trendline

Moving Average Triangle

Resistance
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Figure 6.2: Features of Technical Chart Analysis.

regular expressions) dramatically.
However, describing the past is only half way towards prediction of the fu-

ture. The actual prediction step requires some form of autocorrelation (like,
for example, in linear audio prediction and visual texture recognition). That is,
preceding patterns are mapped to the recent past and partial matches are com-
puted along with some belief in the quality of each match. Since the past shape
of patterns is known, patterns with a good partial match (high belief) allow a
glimpse into the future. A simple quantitative implementation of this idea is
the correlogram. By comparing windows of stock values by autocorrelation the
most likely recurring time span can be identified. Since such rhythms exist in
financial data only over (too) large cycles – we are interested in the immediate
future – simple matching of repetitive symbolic patterns has the better prospect.

In conclusion of this section, stock is due to its characteristics a quasi-
symbolic media type par excellence. Efficient quantitative description methods
exist that suffer from the drawback that the narrow numerical basis is not suf-
ficient for complex quantitative reasoning. Therefore, the belief scores of such
methods are generally low. Luckily, many concepts of technical stock analysis
can elegantly be expressed in symbol sequences – on which the methods of string
transformation discussed in the next two sections can be applied.

6.3 Description of Text

Text understanding is a field of research with a long history, much longer than,
for example, video understanding. In fact, automated text retrieval has been
done for so many years that the name information retrieval – though sufficiently
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generic to include retrieval of audiovisual and other media as well – is often set
synonymous with text retrieval. Even though this fact is not always reflected,
text retrieval follows the big picture of media understanding. On every level of
text understanding (syllables, words, phrases, paragraphs, discourses, etc.) some
feature transformation is performed followed by some categorization process.
The feature transformation may be as simple as removing words to their principal
parts. The result is still a description.

For the computer linguist, it may be unsatisfactory to mix problems as differ-
ent as text retrieval and semantic text understanding. In many textbooks, these
problems are discussed separately, each on the level of its description process
and categorization process, often without differentiating between the two. Still,
we follow the pattern introduced above and describe in this chapter only the
feature transformation part of the different text understanding problems. The
categorization is discussed – together with the categorization of all other media –
in the subsequent chapters. Sticking to the scheme has the advantage of identify-
ing similarities in the methods used and, possibly, learning from clever solutions
employed elsewhere. With this potential at hand, we ask the text expert to be
open-minded against our approach.

We summarize under the headline text understanding the methods employed
in text retrieval and computer linguistics. The difference between the two do-
mains is the approach, which is statistical in text retrieval and model-based in
computer linguistics. We do not see a major difference in the goal, which is both
times the understanding of the contents of text. However, in text retrieval this
goal is approached with stochastic methods (e.g. n-grams of recurring word pat-
terns) while in computer linguistics, the best-fitting model to some given source
is of interest, with the reasoning that the meaning of the text will resemble the
meaning of the best-fitting model. It goes without saying that the statistical
approach has its limitations. Text semantics is only to some degree expressible
in statistical terms. On the other hand, statistical methods are applicable on
extensive text corpora – up to the entire world wide web. Statistics from such a
large source may tell more about the semantics of human communication than
any sophisticated model ever can. Furthermore, statistical descriptions can be
of fixed size (e.g. word frequency histograms). In conclusion, both text re-
trieval and computer linguistics deal with text, follow the big picture of media
understanding and are, in consequence, investigated jointly below.

Computer linguistics spans an umbrella over various goals of automated text
understanding, including automatic summarization of text, the recognition of
the meaning of the content (semantics), the understanding of the moods ex-
pressed by a text, simple copy detection and the recognition of authors by their
style of writing. On the technical level, some important problems are morpho-
logical parsing of sentences, tagging, for example for spell-checking, and the
understanding of discourses. In the latter case, the complexity comes primarily
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from co-references (e.g. ’X did... He...’).
All the above-mentioned problems are of interest to us. Beyond our interest

lie general-purpose data mining, speech recognition (discussed in Chapter 25),
handwriting recognition and sign recognition. The two latter domains are from
the visual media understanding domain on which the same methods as on other
visual media types can be applied.

Text

Words Phrases Semantics

Categorization Categorization Categorization

Transformation Transformation Transformation

Figure 6.3: Text Understanding is a Cyclic Process.

The text understanding problems build on each other. It is hard to recognize
sentences, if the words have not been properly recognized before. It is difficult
to analyze a paragraph if it is not clear of what types of sentences in which order
it is composed of. Therefore, text understanding is, maybe more than any other
media understanding process, a cyclic process. Figure 6.3 illustrates this point.
Given a text, in a first step words can be isolated.1 Using the words (and, for
example, throwing away a few of them) in a second step, phrases which serve as
input for the semantic understanding can be categorized. The semantics could
be used for further reasoning.

Why do we need to know the grammar of a sentence in order to be able to
understand it? Simply because words may have different meanings depending
on their position in the sentence. Hence, most sophisticated applications for
semantic text understanding are based on parsing.

Before we start with introducing feature transformations, we would like to
point out that we face three fundamental problems in text understanding: poly-

1Remark on the symbol system: We do not distinguish here between symbols representing
syllables and symbols representing letters. The major difference is that, in the first case, some
problems do not exist (e.g. detection of syllables) while others become due to the larger set of
symbols a bit harder to model.
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semy, curse of dimensionality and the semantic gap. The first problem becomes
clear from the last paragraph. Words may have different meanings in varied
contexts. A semantic application requires to understand these differences. The
curse of dimensionality is a particular problem of text since, usually, every basic
unit (syllable, word, sentence) is considered one dimension of the categorization
problem. Since texts are, independently of the symbol system, constructed from
many basic units, the description is almost ever high-dimensional. Eventually,
the semantic gap problem is evident in text understanding, because writing is
per se intended for storing semantics. Automated text understanding must,
therefore, always deal with understanding semantics, something that need not
be the case, for example, in audio event classification.

For the feature transformations discussed below, we define the following ex-
ample paragraph – a business news item:

Shares of IBM went up by ten points. Nevertheless, big blue failed
to meet the expectations of analysts. Experts criticize the new
server generation as too far ahead of the customers’ requirements.

One of the characteristics of text understanding is that feature transformation
often requires additional input (next to the source document). Such input may
be a dictionary, a thesaurus that organizes words by semantic similarity, or a
model of the grammar. The media database from which the documents are
drawn is usually referred to as corpus. The elements of sentences are frequently
called parts of speech (POS).

One of the first tasks of text understanding is statistical aggregation. Words
can be counted individually or in recurring phrases by so-called n-grams, i.e.
specific word sequences frequently reappearing in the corpus. Such n-grams
resemble histograms of audiovisual events with the difference that the types of
events under investigation are usually not limited beforehand (unlike colors). A
typical n-gram algorithm could have the following stages (n = 3):

1. For each group of three words (3-gram) do

(a) Remove useless parts (see below)

(b) Count the number of occurrences in the text

2. Count the mean of occurrences over all 3-grams

3. Use all 3-grams with, say, twice as many appearances as the mean as
description

Simple word statistics such as word counting can be interpreted as moments
of the text. In this sense, it may be reasonable to compute the variance of the
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length of phrases as a description for the style of the author. In the example
above, the short sentences may be characteristic of business news. This is, by
the way, a good example for the principal property of media understanding
that semantically very low feature transformations may be successfully used to
explain semantically high level concepts (here, style of writing). Of course, very
often we fail at the semantic gap.

Another important type of feature transformation is throwing away useless
information. This step may be a prerequisite for more sophisticated moments
but as well a feature transformation in its own right (for example, for tagging of
words and phrases). Examples are the removal of the copula and the reduction
to principal parts. If the time information is irrelevant, the example description
may be reduced to the following one.

Share IBM go up ten points. big blue fail meet expectation
analysts. Expert criticize new server generation too far ahead
customer requirement.

In this example, we have removed words such as of, the, by. We have re-
duced plural to singular and the flection of verbs. The proper tools for these
transformations are the grammatical flection rules and a thesaurus. In the next
step n-grams may be computet for recurring phrases and patterns such as share
IBM, big blue, server generation may be replaced by one name each. Of course,
another reduction step would be replacing all uppercase letters by lowercase.

The identification of recurring patterns in text understanding is similar to
object recognition in the audiovisual domain. In audio, we have already en-
countered the ADSR sound model (see Chapter 4). This model is a general
pattern of sound. Likewise, we could employ a general pattern of a phrase such
as noun-verb-object or, for fragments, adjective-noun or adverb-verb. The sta-
tistical identification of n-grams could be based on such text models very much
alike the application of the ADSR model for sound identification. Morphological
parsing is then just categorization of reduced text descriptions based on some
text model.

The style of writing problem can be approached by autocorrelation. The n-
gram implements already a simple form of autocorrelation. Recurring patterns
are extracted from the text by simply counting all possible patterns of length n.
For the detection of the style of writing n-grams can be further investigated by
text models and weighted by their components. For example, an n-gram that
contains a specific compound noun can be weighted as important. If such an
n-gram reoccurs several times in a text, it may be characteristic for the style of
writing of one author or one type of author. In the example above, the usage of
the n-gram big blue may be characteristic for the endeavor of business journalists
to make their texts more interesting by – literally – colorful synonyms. Hence,
this string may be a good (characteristic) description of such a text.
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On the other hand, big blue for IBM is an example for the hardest problem
in discourse understanding: identifying co-references. Why are these two terms
synonymous? Only because someone established this metaphor and over time it
became common knowledge. Hence, the association between the words is more
or less random. Still, a feature transformation that describes this relationship
is thinkable. Based on a reduced phrase and n-grams of important POS the
association could be identified from the usage as substantives and of alternated
use of one of the two POS. This is a typical example why text understanding
is actually media understanding of media understanding. The results of one
description process are categorized and fed into another description process.

The same is true for the understanding of semantics and moods of text. Help-
ful descriptions include text summarization, n-grams, text models and statistical
moments. The understanding itself, however, is primarily a problem of catego-
rization. One algorithm for describing semantics and moods could be based on
sets of similar words, for example, provided in the form of a thesaurus:

1. Remove all simple words from the text

2. Count the occurrence of the principal parts of all other words

3. Group and summarize the occurrences of similar words

4. Take the, say, five most frequent groups as a description of the content
and/or the mood expressed by the text

This algorithm implements the similarity of words as some kind of neighbor-
hood. Structurally, it resembles the dominant color algorithm: words are used
like pixels, the thesaurus fulfils the role of the color model and the selection rule
is both times a simple threshold. Many similar solutions for the understanding
of semantics and moods are thinkable.

Technical remark: Text descriptions can be of fixed or variable length. The
first type – preferred in media understanding – can, for example, be produced
by a histogram of words, phrases, etc. that counts the number of occurrences
per entry. The second – natural – case requires the application of an adapted
classifier that matches descriptions properly and produces semantic predicates
(e.g. ’positive mood=yes’). The semantic predicates can be fed into another
media understanding process.

In conclusion, text understanding covers a number of diverse problems for
which the most powerful feature transformations are removal of irrelevant el-
ements, statistical moments and autocorrelation. In this section, we have not
pointed out any starting points for the application of text methods on symbolic
stock data, because text differs in one essential feature from symbolic stock data
and bioinformation: One symbol alone hardly matters. In text, neighborhood
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has a strong meaning in the sense that symbols are only informative in con-text
(e.g. words, phrases). This may not be the case for symbolic stock data or bioin-
formation. The question of how to benefit from text understanding techniques
in the understanding of symbolic stock data and bioinformation is discussed in
the next section.

6.4 Description of Bioinformation

Tree of Species

Bee Fish Frog Chicken Human

Figure 6.4: A Simple Gene-Based Taxonomy of Species.

Bioinformation understanding pursues the following major goals.

• Sequence similarity : Identification of the similarity of sequences of two
gene strings. For example, often researchers are looking for the longest
common subsequence of two gene strings.

• Global and local alignment : Alignment of two gene strings (global) or of
essential elements of pairs of strings. One major problem here is the iden-
tification of anchors, i.e. equivalent substrings – used as starting points.
Global alignment, can, for example, be used to build a taxonomy of species
(Figure 6.4).

• Multiple sequence alignment : Practically, it is very important to perform
local alignment for groups of strings (larger than two) in order to under-
stand the complex relationships between genes better. Technically, multi-
ple alignment is mostly a performance optimization problem.

• Phylogeny reconstruction: Identification of relationships between taxa (spe-
cies) based on their genetic information. This is another way of measuring
the similarity between gene strings.

• Motif finding problem: Which proteins follow from a particular DNA struc-
ture? The answer depends on so-called transcription factors, i.e. elements
of the RNA.
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• Population genetics: Members of a population carry mostly the same ge-
netic information. All variations come from so-called single nucleotide
polymorphism (SNP). Goal of population genetics is the identification of
such SNPs.

In all of these applications, the major problems are the size of the data and, in
consequence, the performance of the comparison process. State-of-the-art bioin-
formation understanding employs non-heuristic algorithms. For example, the
sequence similarity problem is approached by the Needleman-Wunsch algorithm
(equivalent to dynamic time warping), and an edit distance. See Chapter 8 for
details on both methods. The algorithm guarantees the quality of an identified
solution. Due to the large number of possible alignments, however, the central
problem is the performance problem here. The same is true for most of the other
standard solutions used in bioinformation understanding.

Our approach is fundamentally different, may be characterized as a heuristic
and follows the big picture of media understanding. Rather than implement-
ing a sophisticated matching process, we propose a cyclic media understanding
process where complex gene data is reduced to descriptions, and descriptions
are categorized by state-of-the-art machine learning techniques. If one iteration
does not provide a satisfactory result, the categories, descriptions and raw data
are fed into another cycle of media understanding, and so on. In this divide
and conquer scheme, performance is not the big issue. Quality is – it depends
on the quality of descriptions and the number of iterations. Below we do not
investigate the standard algorithms of bioinformatics but focus on unorthodox
feature transformations for the above-named problems. The classic way of bioin-
formation understanding is, for example, very well described in [359].

Before we begin with the discussion of feature transformations, we would
like to give a few more technical details on the bioinformation domain (started
in Section 3.4). The human genome consists of 23 DNA pairs (chromosomes)
representing about 35000 genes. Of the 23 pairs 22 are non-sex and one is the
sex chromosome. Every gene is composed of roughly 1000-2000 base pairs. The
entire human genome is laid down in the GenBank database [276].

Figure 6.1 lists the so-called genetic code, a list of equivalences between
amino acids and triplets of nucleotides. As can be seen, some acids are encoded
by more than one triplet. Hence, a description of a gene string based on the
symbol set of the amino acids is ambiguous. The same sequence of acids may
be encoded by different nucleotides. On the other hand, the larger symbol set is
roughly equivalent to the Latin character set and, therefore, more convenient to
analyze for humans. Which encoding to use depends on the type of application.
Implementing sequence alignment as a two-step process, first, raw alignment
based on the amino acids and second, exact alignment based on the nucleotides
would be a nice heuristic media understanding approach.
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Amino acid Nucleotide triplets
A GCA, GCC, GCG, GCT
C TGC, TGT
D GAC, GAT
E GAA, GAG
F TTC, TTT
G GGA, GGC, GGG, GGT
H CAC, CAT
I ATA, ATC, ATT
K AAA, AAG
L CTA, CTC, CTG, CTT, TTA, TTG
M (start codon) ATG
N AAC, AAT
P CCA, CCC, CCG, CCT
Q CAA, CAG
R AGA, AGG, CGA, CGC, CGG, CGT
S AGC, AGT, TCA, TCC, TCG, TCT
T ACA, ACC, ACG, ACT
V GTA, GTC, GTG, GTT
W TGG
Y TAC, TAT
End codons TAA, TAG, TGA

Table 6.1: The Genetic Code.

Above we use the abbreviation RNA, which stands for ribonucleic acid –
in contrast to deoxyribonucleic acid (DNA). RNA is very similar to DNA. The
three differences are: RNA uses a different type of sugar (ribose instead of de-
oxyribose), instead of base thymine it uses uracil and may occur single-stranded
while DNA is always double-stranded. RNA appears in various roles of which
messenger RNA (mRNA) is the most interesting for us. For the creation of new
cells, the DNA at the cell core is split into two independent strands and tran-
scribed to mRNA. The mRNA is then translated to proteins, which build a fresh
cell. This process is supported by other forms of RNA. The type of the new cell
is determined by the motifs encoded in the genes. Since RNA is similar to DNA
and used to transform different forms of DNA to the same cell structures, it is
also called a secondary structure.

Above we named a number of structural alignment problems: local/sequences,
global, multiple alignment. For all of these problems, we suggest a hierarchical
processing model based on windowing.
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1. Divide the source media objects in chunks of equal window length

2. Extract descriptions by some feature transformation

3. Establish correspondences between windows of different sources by cate-
gorization of the descriptions and correspondences identified earlier

4. Repeat the process with halved window size until the quality of the align-
ment does not improve any more

Suitable feature transformations could include throwing away all junk DNA,
the transformation of the representation from nucleotide triplets to amino acids,
n-grams of symbols that reoccur with high frequency (compare below, the identi-
fication of motifs), the transformation of amino acids to quantitative delta values
and the computation of statistical moments, zero crossings, energy values, etc.
of the numeric representations. Whatever turns out successful in experiments
is a reasonable feature transformation. The categorization process could, for
example, be based on simple distance measurement. See Chapter 8 for these
and other possibilities.

Several remarks can be made on this approach. First of all, it is a divide and
conquer strategy that has in advantage that it is simple and fast to compute.
On the other hand, summarizing highly expressive gene codes into descriptions
without reasonable explanation may appear insane to the domain expert. This
proceeding, however, is a general approach of media understanding. Descriptions
may not make any sense at all – as long as they provide the means to the catego-
rization method to differentiate between similar and unsimilar objects. Another
important remark is, that this is a localized approach. Hence, we encounter
the – hopefully, already familiar – structure of localization, some kind of quan-
tization and symmetric to localization, aggregation. Eventually, the iterative
procedure allows to control the quality of the matching process. It is unreflected
understanding in bioinformatics that alignments have to be perfect to the last
bit. The algorithm is capable of reaching this goal but may also cut off at 90
per cent already – if desired. Hence, it introduces a new degree of freedom into
genetic research.

For phylogeny reconstruction, one standard approach is based on the minimal
number of mutations required to transform one taxa into another, visualized in a
so-called ultrametric (dendrogram, see Chapter 8). Alternatively, the two taxa
of interest could be summarized by the methods listed above, and similarity
could be expressed as Euclidean distance. In particular, a simple histogram
of the frequencies of occurrence of the amino acids could be a characteristic
description.

The motif finding problem is a typical problem of autocorrelation. The goal
is to identify structures of 5-20 base pairs (the motif) in RNA strings. The motifs
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are contained in so-called transcription factors bounding sites and distinguished
by the fact that they occur multiple times. Hence, one straightforward approach
would be to compute all n-grams of n ∈ [5, 20] and to identify all exception-
ally often occurring elements. The aggregated structure of one specific n-gram
(varying n) would resemble a correlogram.

Eventually, the problem of population genetics can be approached by the
heuristic alignment algorithm. We look for small differences in a largely aligned
pair of strings. The algorithm is tailor-made for the indication of such locations.
In fact, already after a few iterations of the algorithm starting points for the
identification of SNP should become visible. SNP should lie at locations where
the match of two (or more) windows is suboptimal. If such a non-perfect match
remains over further iterations, linear search in this window could be used to
identify the exact SNP location.

Descriptions of bioinformation are per se of variable length. They can be
made static by the same methods as suggested for text. The simplest approach
is building a binary histogram of known genes with ’1’ for present and ’0’ for
missing genes in a particular string. Such predicates could be employed for
further analysis by predicate-based methods.

Now, which similarities between the methods employed on text and bioinfor-
mation can be identified? Obviously, the media domain is considerably differ-
ent. As emphasized above, individual symbols are not as important in text as
in bioinformation. Still, we suggest heuristic algorithms for the solution of the
bioinformatics problems. The feature transformation process is mostly based
on statistical moments and autocorrelation by n-grams – though the ’gram’ is
a single symbol in the bioinformation domain. The essential difference between
text understanding and bioinformation understanding is the processing model.
Text is best processed linearly, while for bioinformation, it makes sense to use a
divide and conquer strategy.

How can the methods applied on bioinformation be employed on symbolic
stock data? First of all, we have to make clear that these two domains pur-
sue completely different goals. While stock data analysis is after estimating the
future from the past, bioinformation understanding is about identifying simi-
larities between groups of objects. Still, some methods are also applicable on
stock data. For example, the n-gram approach could be used in conjunction
with pre-defined patterns in order to describe the frequency of occurrence of the
patterns. Such information would be valuable for prognosis. Furthermore, it
may make sense to align multiple stock data objects before analysis in order to
increase the expressiveness of the source data. For this purpose, the introduced
alignment procedure could be employed.

At this point we conclude three chapters of simple feature transformations for
the description of media objects. We have introduced a number of quantitative
and symbolic schemes for summarization, redundancy elimination and simplifi-
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cation of media objects. The Chapters 8 and 9 will show how these descriptions
can be employed to perform the categorization step of media understanding.
However, before we dive into this matter we have to leave a few words on the
merging and filtering of descriptions. The next chapter will show how descrip-
tions can be merged in order to perform true multimedia understanding and –
in this process – how the level of redundancy in the descriptions can be reduced
to a minimum.





Chapter 7

Merging and Filtering of
Descriptions

Introduces how descriptions are merged, the concept of redundancy, that redun-
dancy is a bad thing, the various remedies provided by information filtering,
factor analysis, visualization of descriptions and statistical testing.

7.1 Merging of Descriptions

The four sections of this chapter introduce fundamental concepts of informa-
tion filtering for media understanding. The first section explains merging of
descriptions extracted from technically different yet semantically related media
objects. The next two sections deal with redundancy reduction of merged and
unmerged descriptions. The last section discusses statistical testing as well as
options for the visualization of descriptions that support the better understand-
ing of the morphology of descriptions. Advanced information filtering methods
are discussed in the second and third part (Chapters 16 and 26).

The major purpose of information filtering in media understanding is the
elimination of undesired redundancy in the descriptions. Redundancy means
that two or more elements (one quantity/one symbol) of a description express
the same information, i.e. – in quantitative terms – have similar mean and
variance. In this case, one element would be sufficient as a description. The
other element could be discarded.

Theoretically, each feature transformation is supposed to produce descrip-
tions that are without redundancy. In practice, none of the more than thirty
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feature transformations that we introduced in the preceding chapters can pro-
vide redundancy-free descriptions for any type of media content. Furthermore,
by gluing together the descriptions of one event captured in separate media chan-
nels/streams together, additional redundancy is being introduced. Redundant
elements, next to consuming resources for no benefit, may have confusing effects
on the categorization process. Hence, elimination of redundancy is desirable.

In this information filtering chapter we deal exclusively with quantitative
media. Merging of symbolic descriptions will be discussed in Chapter 16. The
reasons for postponing symbolic media are threefold:

• Quantitative description elements are usually modeled as being the sum of
a signal component and a noise component. The noise component is drawn
from the same distribution for all elements of the description. In conse-
quence, it may cause redundancy between elements. This model provides
a convenient explanation of redundancy in description elements. Symbolic
media are not able to express such a noise component due to missing gra-
dations. Hence, redundancy in symbolic descriptions can only be explained
by rhythms of recurring symbols – something that we already covered in
the last chapter.1

• Merging of descriptions of one event (e.g. the audio and video track of
a surveillance video showing an accident) requires that descriptions are
of fixed length, because similarity measurement between events has to be
done element-wise. If descriptions could be longer or shorter depending on
the media content events would not be comparable in the simple element
to element form anymore (see below for more). Symbolic descriptions
are per se not of fixed but variable length. Of course, symbolic media
can be expressed statically (e.g. word/gene histograms) but this is not
the standard. Merging – the most important source of redundancy – can
therefore, not be done in the standard way. Hence, symbolic descriptions
are generally less interesting for information filtering than quantitative
descriptions.

• Eventually, most information filtering techniques employ statistical algo-
rithms and are, therefore, strictly numeric. For symbolic data, only few
methods like Huffman coding are available.

In the remainder of this section we discuss the merging problem. We intro-
duce the general concept, the properties of the resulting feature space, operations

1There is, however, a general-purpose approach to redundancy elimination for symbolic
descriptions: zipping them (lossless compression). Compression methods like Huffman coding
eliminate the redundancy of symbolic descriptions. Unfortunately, at the same time zipping
destroys the semantic content of the description. It is, therefore, not applicable to media
understanding.
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performed alongside and special issues of multimedia description merging. The
statistical analysis of merged descriptions is explained in the subsequent sections.

Why should we want to merge descriptions in media understanding? Often,
one event is expressed in several media objects or multiple channels of one media
object. For example, a goal in soccer is perceivable visually (the round thing goes
through the rectangular thing, as Sepp Herberger, German world cup coach 1954
put it) as well as audibly (people cheer). Exploiting all available channels makes
the categorization process more reliable. In the example, if the round thing
goes through the rectangular thing but people do not cheer then the goal was
probably not counted (or nobody came to watch the game). Hence, the fusion
of descriptions is a very important step for successful media understanding.

Source

Transform 1 Description 1

Transform 2 Description 2

Transform 3 Description 3

Transform 4 Description 4

Figure 7.1: Merging of Descriptions.

Figure 7.1 illustrates the straightforward description merging process of me-
dia understanding. The source is a multimedia object with n channels. In the
first step, all kinds of feature transformations are applied and descriptions are
extracted. These descriptions (each one being a vector of numbers) are merged
by simply concatenating them along the vector dimension. The result is a vector
that may practically have ten thousand elements or more. This scheme has two
prerequisites:

1. Description lengths are fixed, i.e. independent of media length or media
content. Otherwise, positions of description elements would vary in the
merged description string from the first element of the second description
on.
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2. The actual order of the descriptions in the merging process is irrelevant,
but it has to be the same for all members of the population (e.g. all scenes
of shots on goal in a soccer movie database).

These conditions are required by the categorization step of media under-
standing. Whatever form of categorization is used, at the center lies some kind
of comparison process of descriptions. This comparison process relies on the rule
that specific description elements located in particular positions of the descrip-
tion vector have a particular meaning. The merging process must not violate
this condition.

There is no fundamental problem in concatenating the descriptions of one
event extracted from diverse media sources. An art gallery application, for ex-
ample, that desires to measure the excitement of a visitor that wanders through
the exhibition, may use visual sensors for capturing the facial expressions, audi-
ble sensors for capturing comments and a brain computer interface for capturing
brain activity. These modalities can easily be merged under one condition: the
temporal context must be preserved. That is, the descriptions to be merged must
have been extracted from the same window of time. Space may vary widely.
Time is the glue that holds the elements of an event together. Of course, tem-
poral gaps may occur where semantically justified (e.g. lightning and thunder
in thunder storm events).

Zero Crossings

Average Luminance

Figure 7.2: A Two-Dimensional Feature Space.

We said that the result of merging, the descriptions of one media event, is a
(usually, long) vector. Media understanding is always performed on a database
of media objects. For information filtering it is beneficial to merge the vectors of
all media objects into one object, referred to as feature space (description space).
Feature space is a matrix of description elements and media objects. We already
encountered this concept in Section 3.2. Typically (not necessarily), the rows
express the events while the columns express the descriptions. In terms of our
mathematical notation feature space is just another array with a two-dimensional
locations set.
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F = [sl|s ∈ S ∧ l ∈ L2] (7.1)
Figure 7.2 gives an example of an exceptionally low-dimensional feature

space. The location set has a dimensionality of 23 media objects with two
description elements each, i.e. L = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), ..., (23, 2)}.

A number of data problems can be identified by analyzing feature space. The
above-mentioned redundancy is recognizable by a constant relationship (linear or
over-linear) of two or more description elements over large shares of the media
database. Furthermore, ineffective feature transformations that generate the
same descriptions for different types of content can be recognized as rows with
low variance in the feature matrix. Undesired distributions of description values
can be identified by building histograms of values over the rows of feature space.

Below, we introduce a number of methods that fulfill these and similar tasks.
However, in this proceeding we have to be careful about the levels of mea-
surement (scale types) on which particular description elements are expressed,
because the type of scale determines the mathematical operations that may be
performed in the analysis. Figure 7.3 summarizes the four major types of scales.

Nominal

Ordinal

Interval

Ratio

Figure 7.3: Levels of Measurement.

The simplest type of scale is the nominal scale, which is essentially a set of
symbols without a general relationship. Symbolic descriptions are based on the
nominal scale. Since not even addition and subtraction are defined on such data
statistical analysis cannot be performed on nominal-scaled data.

The ordinal scale differs from the nominal scale in the one property that
relationships such as greater than and smaller than are defined here. Hence,
the symbols (often, numbers are used) can be ordered along the scale. However,
arithmetical operations are not yet possible on ordinal-scaled data.

The interval scale extends the ordinal scale by defined intervals between each
two symbols (then, always numbers). In consequence, addition, subtraction and
multiplication by n ≥ 1 can be performed. Most information filtering methods
discussed in this book require a feature space where each row and column is
interval-scaled. The quantitative descriptions extracted by the feature transfor-
mations discussed in the preceding chapters are mostly at least interval-scaled.
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Ratio scale, eventually, extends interval scale by some origin (a zero value).
If an origin exists, all arithmetic operations are performable. Ratio scales with a
natural origin are often called absolute scales. One example would be the Kelvin
temperature scale where zero is the absolute end of atomic movement.

It is of high importance for many methods of media understanding to take
care that all description data are at least on the interval level. However, prac-
tically, this is not always the case. Since media understanding is an empirical
discipline, the standard remedy to this problem is to simply assume the entire
feature space to be interval-scaled, believing less in the results of analysis and
performing more types of analysis in order to level the disbelief out. Moreover,
the differentiation between nominal/ordinal and interval/ratio scales illuminates
the gap between quantities (such as samples, descriptions) and symbols (such
as characters, predicates). The practical difference between the two types may
be bridged by some interpolation method, yet the mathematical difference is
fundamental.

Continuing with practical problems, it is often helpful to normalize all rows
and/or columns of feature space to the same range of values and/or statistical
moments. For example, comparing two events by the mean of their description
elements makes only sense if all description elements measure on the same range
of values. If one description, say, average short time energy measures on the
interval [0, 8000] while the other, say, average luminance measures on the interval
[0, 255] then the latter would influence the mean less than the first. Such an effect
can be avoided by normalizing all descriptions to the same range. The following
method normalizes all elements of vector x to [0, 1]:

x(l) =
x(l)−min(x)

max(x)−min(x)
(7.2)

The resulting values can be transformed to any desired range by adding an
offset and/or multiplying with a scale factor. Sometimes, instead of a specific
range, it is desired that description elements have particular statistical moments,
namely mean and variance. The following method normalizes all elements of
vector x to µ̄x = 0 and σ̄x = 1:

x(l) =
x(l)− µx

σx
(7.3)

This normalization is, for example, used in factor analysis as a preprocessing
step. The second normalization may, by the way, be used to replace the first,
if the mean is chosen in the middle of the desired interval and the variance is
chosen appropriately.

So far, we have dealt with constructing a feature space from individual media
sources that represent one event. We have not considered multiple channels
(e.g. audio channels) of the same event. Of course, every channel may be
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considered an individual media object and treated accordingly. Very likely, this
would practically lead to high redundancy of the merged descriptions. It is
often superior to perform some combination operation instead. Frequently used
methods are employing the averages of the corresponding description elements,
the maximum, minimum or an otherwise – in some semantically reasonable sense
– superior value. If it is not clear what method to chose it is advisable to try
all options, apply the analysis methods suggested in the next two sections and
choose the best-performing operation according to the filtering results.

In conclusion, the first step of information filtering is building a feature space.
Merging descriptions has a negative effect on the dimensionality of the media
understanding problem and, therefore, on the performance since it is inverse to
a divide and conquer strategy. On the other hand, very useful normalization
and analysis methods become applicable that allow to reduce the level of poly-
semy in the descriptions by eliminating noise, redundancy and other undesired
components of the data. The next section will discuss simple analysis methods
that can be applied on feature space.

7.2 Simple Statistical Filtering

This section summarizes methods for the more efficient representation of media
events by descriptions in feature space. It starts with coarse and sparse represen-
tation, two methods for reducing the size and number of description elements.
The discussion continues with statistical moments for the summarization of de-
scription elements, leading directly to regression and using differences instead
of description elements. More complex methods for redundancy elimination are
introduced in the next section.

In our mathematical notation, descriptions are arrays of samples sl drawn
from a sample set S. Aggregated in feature space, it makes a huge difference –
for example, in terms of memory, but also in computation time – if the members
of S are of type integer or of type float. Most feature extraction methods,
however, neglect the problem of efficient storage and will rather provide floating
point descriptions. Coarse representation is one method of information filtering
for reducing the size of description elements. Coarse representation is one type
of source coding.

The simplest form of coarse representation is reducing the precision, for ex-
ample, by the round() function. Furthermore, unnecessary orders of magnitude
can be eliminated by dividing by 10x before rounding. More intelligently, the
above-introduced normalization methods can be used for the same purpose. Re-
moving a static offset can also be helpful to fit description elements into smaller
types of data.

The process of coarse representation is straightforward. It is recommendable
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to build a histogram (density) of all values of a description element over all media
objects in feature space. Then, a proper reduction method can be chosen. If nec-
essary, outliers can be eliminated or – by hand – represented by reserved values.
The major difficulty in coarse representation is defining a transformation that
is efficient but preserves the characteristics (in particular, distribution) of the
data. The suggested techniques are harmless in this sense and recommendable
for use.

Sparse representation goes one step further than coarse representation. In-
stead of increasing the density in the description elements, sparse representation
techniques aim at making as many description elements irrelevant (e.g. zero) as
possible. Sparse representation methods are similar to source separation algo-
rithms (see Chapter 16). The general problem of representing a description x
by weights w can be formulated as follows:

y = Ax⇒ m0(w)→ min (7.4)

The goal is to identify a weight vector w with as few non-zero elements as
possible. Measure m0 counts the number of non-zero elements. Matrix A is a
so-called overcomplete dictionary (or codebook). The columns of A are typical
descriptions of typical media events. The weights w express the extent to which a
particular description x is similar to the dictionary. Hence, sparse representation
tries to represent descriptions by linear combinations of prototypes. The better
the codebook the easier is the sparse representation.

Sparse representation has two obvious problems:

• Defining a good dictionary A

• Identifying the best vector w

The second problem is not a media understanding problem. Typically, a
matching pursuit strategy or some other operations research method is employed.
The dictionary can be defined randomly or by selected (typical) members of the
feature matrix. If necessary, an iterative process of estimating or guessing A,
computing w and checking its quality can be used for optimization (so-called
expectation maximization, see Chapter 9).

Another form of sparse representation would be to replace n similar descrip-
tion elements by their statistical moments. The standard discrete moments of a
description vector x of n = size(x) are defined as follows:

µ =

n∑
i=1

xi

n
; v =

n∑
i=1

(xi − µ)2

n
;σ =

√
v;κ =

n∑
i=1

(xi − µ)3

nσ3
(7.5)
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The moments from left to right are mean, variance, standard deviation and
skewness. Mean and standard deviation are efficient ways of describing groups
of description elements. We used them on a couple of occasions to define feature
transformations. Skewness is very useful to find out if the distribution of some
elements is skewed or not. Next to sparse representation, statistical moments
can also be used for testing (see below). All moments are special cases of the
following system:

µk,r = E
(
(x− r)k

)
(7.6)

Here, the moments µ at position r of order k are drawn from data x. If
r = 0, k = 1 we receive the mean. If r = µ1,0, k = 2 we receive the standard
deviation and so forth. For some media understanding problems it may be
interesting to introduce higher-order moments as description elements.

Sometimes, however, the mean is not a good measure for a population. One
example is the existence of a compact population with a few significant outliers.
In this situation, it is recommended to use the median m instead of the mean,
because it is less prone to outliers. One popular algorithm for computing m from
a vector x is mean shift :

m =

∑
k(xi −m)xi∑
k(xi −m)

(7.7)

Function k is a – typically Gaussian – weighting function. Starting from a pre-
defined (e.g. random) m, the equation can be used iteratively to refine the mode
until the level of improvement approaches some ε threshold (m̄−m < ε). Often,
the algorithm is not applied on an entire description but just a neighborhood
of some point. Mean shift is a simple and very popular algorithm in media
understanding.

f(x) = a.x+ b

Figure 7.4: Linear Regression Example.
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Regression is another simple model for the summarization of – here, longitu-
dinal – data. If feature space is somehow stretched, i.e. has high covariance over
two or more dimensions, it is a good idea to replace the individual description
elements by regression parameters. Due to the form of computation, regression
is also called the method of squared errors. Figure 7.4 illustrates the setting in
the two-dimensional case. In a cloud of descriptions, we search for a regression
hyperplane represented by parameters a, b. These parameters can be computed
from a pair of descriptions (x, y) as follows:

b =
χx,y
σ2
x

(7.8)

a = µy − bµx (7.9)

χx,y =

∑
(xi − µx)(yi − µy)

n
(7.10)

Here, χ is the covariance of x, y. Traditionally, the correlation coefficient is
employed as a quality measure for the representation:

ρx,y =
χx,y
σxσy

(7.11)

If the absolute value of the correlation coefficient approaches ’1’ the data is
well represented by regression.

The last method for efficient representation to be mentioned here are delta
coefficients. The idea is very simple. Instead of the description elements xi we
employ the differences between neighbors, and so on. With every iteration, one
element is lost and the others can be represented by smaller types of data.

δ = xi+1 − xi; δδ = δi+1 − δi (7.12)

This discrete scheme resembles derivation in continuous spaces. Figure 7.5
illustrates the effect. We suggested delta coefficients already for the descrip-
tion of stock data. Their application makes sense for any type of data where
neighborhood has a (temporal or other) meaning, i.e. where difference is a se-
mantic category. Delta coefficients are always useful if the primary interest is
not in magnitudes but in (small) change. It is, therefore, not surprising that
delta coefficients up to fourth order are employed in audio understanding, for
example.

In this section, we introduced several simple models and algorithms for pol-
ishing feature space. Their effect is mostly positive in terms of performance,
since they reduce the dimensionality of the data. On the other hand, valuable
information can easily get lost by these methods which may increase the se-
mantic gap between media content and descriptions. Since one of the biggest
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Signal

Delta Coefficients

Delta Delta Coeffs.

Figure 7.5: Signal, Delta and Delta Delta Coefficients.

problems of media understanding is dealing with large data sets the application
of statistical filtering is still highly recommendable. However, more is possible –
as we will see in the next section.

7.3 Factor Analysis

The methods discussed so far have in common that they seek optimization with
limited information given. Some operate on individual description elements, oth-
ers on groups. None utilizes the entire feature space. Hence, the gained benefit
is limited. In this section, we discuss methods for redundancy elimination over
the entire feature space: factor analysis, in particular, one method, principal
component analysis (PCA). PCA is one of the most powerful yet elegantly sim-
ple methods for linear and non-linear redundancy detection and elimination in
information filtering.

The fundamental hypothesis of PCA (we use the term synonymous with
factor analysis, though several variations do exist and are used) is illustrated in
Figure 7.6. The variables are the description elements representing observations
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Factor 1 Factor 2

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Figure 7.6: The Idea of Factor Analysis.

(another name for media events/objects/content) laid down in the data matrix
(feature space). The factors are linearly independent weight vectors like those
assumed for sparse representation above. The hypothesis is that the variables are
just linear combinations of the factors. One factor contributes to the explanation
of one or more variables, and each variable is explained by one or more factors.
Redundancy is here defined as co-variance of variables and expressed in the
weights of factors on variables. For some given feature space F the arrows in the
figure correspond to W in the algebraic expression F = W.X. W is a matrix of
linearly independent weight vectors called the factors matrix. X is the so-called
loadings matrix – something very similar to a codebook.

λ1, v1
λ2, v2

Figure 7.7: Eigenvectors and Eigenvalues in Factor Analysis.

Goal of factor analysis is to identify the loadings matrix X from the known
F . If the loadings are known we can use the factors (computed by W = F.X ′)
instead of the redundant data. Since we will usually have much fewer factors
than variables the result is large-scale redundancy elimination. However, the
problem is obviously underdefined. The result depends, therefore, on the chosen
algorithm and parameterization. PCA follows the strategy described in Figure
7.7. Feature space is viewed as a cloud of observations in some n-dimensional
space of variables. PCA computes the elliptical hull of this data cloud and
describes it by – necessarily, perpendicular – vectors pointing in the directions
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of its major axes. The length of each vector represents the scatter of the data
cloud in this direction, i.e. it is a measure of variance. The concatenated matrix
of the first x dimensions is employed as the loadings matrix X.

This scheme may appear confusing at first sight, but is highly reasonable.
What we have is a redundant linear space with covariances in some directions (in
the figure, towards the upper right). What we are looking for is a transformed
coordinate system where no covariances exist anymore. Hence, covariance (linear
dependency) is synonymous for redundancy and transforming the base eliminates
redundancy. The major axes of the elliptical hull are an orthogonal base of
feature space.

The method that PCA uses for identifying the orthogonal base is as straight-
forward as beautiful. It relies on a given feature space F of n observations and
m variables in which all description elements are normalized to zero mean and
standard deviation one. The elements of feature space are assumed to be at least
interval-scaled, i.e. subtraction and multiplication are possible. The algorithm
consists of the following steps.

1. Compute the covariance matrix of F as χ = F ′.F
m−1 . Subtraction of the mean

and division by the standard deviation fall away due to the normalization.

2. Eliminate the factor matrix in the expression F = W.X as follows:
χ = F ′.F

m−1 = (W.X)′.W.X
m−1 = X′.W ′.W.X

m−1 . Since the components of W are
linearly independent by definition we have W ′.W

m−1 = I, I being the unit
matrix. In consequence, χ = X ′X. This result is called the fundamental
theorem of factor analysis.

3. Compute the eigenvectors vi from χ and use them as the columns of X.
Furthermore, use the eigenvalues λi as measures for the importance of the
eigenvectors.

The third step is a heuristic, yet a very good one. The eigenvalues and
eigenvectors of some matrix A are defined in linear algebra as A.vi = λi.vi.
That is, matrix A is just a weight of value λi in the direction of vector vi. In
other words, A is highly covariant in the direction of the eigenvector. Since
all extracted eigenvectors are perpendicular to each other, they form a base
naturally suited to the PCA problem. In matrix X the eigenvectors are sorted
by descending eigenvalue.

This point could actually be the end of the story. Practically, however, and
additional step is usually performed in factor analysis: factor rotation. The
eigenvalues provide a good heuristic solution to the fundamental theorem – but
not necessarily the best. Iterative rotation of X by some rotation matrix T
with the property T ′T = I might cause further improvement. Various heuristic
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rotation schemes do exist. One of the most popular is called varimax rotation
where the rotation matrices come from the Lie group SO(2), for example:

T =

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 (7.13)

Here, α is the rotation angle for the coordinate system. The rotation may
be performed iteratively until an optimum is reached.

PCA is one type of factor analysis. Many variations do exist. Loadings
may be extracted differently, represented differently and/or rotated differently.
Furthermore, instead of using all eigenvectors as factors, only a subset may be
used. The most frequently used cutoff criterion is the Kaiser criterion. It is
based on the idea that in expressing the length of an eigenvector, the eigenvalue
is a measure for the variance along the dimension of this eigenvector. In the
initial normalization, variance was standardized to ’1’ for all variables of feature
space. Hence, it makes sense to include only those factors in the loadings matrix
that have an eigenvalue (variance) λi > 1. All other factors are actually more
redundant (less variant) than the original data. Using a cutoff criterion higher
than one causes further data reduction (and loss).

Above, we mentioned that factor analysis can also be applied on non-linear
data. The algorithm so far is exclusively based on linear algebra. However, it can
easily be extended to non-linear data by the introduction of a so-called kernel
function k(x, y). Kernel functions are explained in Chapter 18. They provide
linear similarity measurement in non-linear spaces. PCA can be applied to non-
linear data by setting χ = k(F ′,F )

m−1 and performing the rest of the derivation as
shown above.

The most important result of PCA for media understanding is the loadings
matrix. This matrix can be employed to transform feature space to a more
compact ’factorized’ form by solving the matrix equation W = F.X ′. Since the
description elements of W are then not interpretable anymore (as being linear
combinations of abstract codebook vectors), the transformed feature space is
sometimes called latent semantic.2 Hardly any redundancy (in terms of covari-
ance) is left in the sparse representations generated by PCA.

The eigenvalues can be used as a quality measure for the feature transfor-
mations that generated feature space. The accumulated value

∑
λi is called

the communality. The communality says how many per cent of variance the
extracted factors explain. The fewer factors provide high communality (e.g. 90
per cent or more), the more redundant feature space is and the less effective the
used feature transformations are – from the information-theoretic perspective.

2According to one colleague, this naming is a result of the reasoning that if multimedia
scientists do not understand something, it must be semantic.
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Practically, PCA is almost every able to reduce feature space to one third (if,
for example, excellent audio transformations are used) or even one tenth (not
untypical, for example, in the visual domain).

Factor analysis, in particular, PCA is a highly popular algorithm in media
understanding. It is employed on audiovisual data as well as all other data
types. Its information filtering effect is positive concerning dimensionality and
performance. Noise is being eliminated effectively. However, throwing away data
always bears the risk of increasing the semantic gap further.

In Chapter 16 we will encounter further methods for filtering of descriptions.
The last section of this chapter, though, is dedicated to the understanding of
what feature spaces typically look alike. This understanding is of fundamental
importance for comprehending the difficulties of categorization.

7.4 Understanding Descriptions

In this section, we deal with two approaches to understanding the structure of
descriptions: visualization and statistical testing. Visualization would certainly
be the most intuitive way of getting into the data if there was not the problem
that multimedia descriptions are usually high-dimensional and, since the maxi-
mum of visualizable dimensions is three, only fractions and views of the entire
space can be visualized in one diagram. Statistical testing, on the other hand, is
sensitive to the underlying model which may be conservative in the sense that
the acceptance of a hypothesis may depend more or less on the size of the sam-
ple (here, a database of media objects). Still, tests for mean and variance may
provide valuable insights into the structure of descriptions.

The motivation of understanding the descriptions is strongly connected to
the categorization process. In the subsequent chapters, we will see that the shelf
of categorization methods is well filled. Choosing the appropriate categorization
method is of highest significance for the performance of media understanding
systems. This choice depends on the structure of the data points: Is the space
uniformly distributed? Where do accumulation points exist? Etc. The meth-
ods presented below help to answer these questions and, therefore, support the
categorization process.

What is important to know about feature space? Certainly, as we already
noted, the types of distribution of the description elements. There are two gen-
eral options: uniform distribution, which is usually the desired one, and normal
distribution, which should not be desired. The real distribution of description
elements will, of course, hardly ever match one of these ideals. As part of the
distribution, important properties are holes, i.e. values/intervals that are hardly
or never used. Such holes can be made subject to compression or sparse repre-
sentation, but they may as well provide valuable information on the quality of
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the media database assembled in feature space. Eventually, if the objects in the
media database are pre-labeled into categories, the distribution can be checked
for each class of objects.

The information visualization research area provides a vast number of ef-
fective visualization methods, some of which even made their way into stan-
dard office programs. Professional statistics packages provide more-sophisticated
methods and some, like the statistics language R were even developed for the
visualization task. In media understanding we are primarily interested in the
visualization of some feature space. Each media object should be visualized as
a point in the high-dimensional space of description elements. The problem of
mapping the high-dimensional space on two- or three-dimensional graphs can be
solved in two fundamental ways:

• Show subspaces of one, two or three dimensions – if necessary, in sets
of graphs. If only one dimension of feature space is shown than like a
histogram against the set of values that occur on this dimension.

• Compress the n-dimensional description space to a two- or three-dimensional
view. The major goal of this approach is to preserve the original distance
relationships of feature space as good as possible.

Moments

Variables

Distribution

Figure 7.8: Data Visualization in Weka.



7.4. UNDERSTANDING DESCRIPTIONS 135

Selected Variable

Other

Figure 7.9: Data Visualization in Weka.

Below, we introduce one example for each approach. The Weka Data Miner
[378] is a tool for general-purpose categorization. It provides a set of state-of-
the-art categorization methods but as well some very nice visualization methods
for feature spaces. Figures 7.8 and 7.9 show examples from a small visual media
space. In the left panel of Figure 7.8 the description elements are listed by name
(here, CL for MPEG-7 Color Layout and CS for Color Structure). The upper
right panel shows the statistical moments of the selected variable (mean, span,
standard deviation). The lower right panel provides a one-dimensional visual-
ization. In the example data set, the media objects are labeled as members of
five categories (coded in different colors). The bar segments in different colors
express the histograms (distributions) of the classes and the entire population
over the values occurring for the selected description element. As we can see, the
distribution resembles rather the normal distribution than the uniform distribu-
tion. That is, most media objects have the same description value. Hence, this
description element is not very discriminative between categories. Weka allows
to browse through these individual visualizations of description elements quickly
and, thus, to comprehend the topology of feature space in an intuitive way. It
is, therefore, highly advisable to use this tool in media understanding.

Figure 7.9 shows a second view. Again, classes are coded in shades of gray.
Pixels represent media objects. The right panel allows to grab the distributions
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of twenty or more description elements with one look.3 The left panel allows
for mapping two description elements against each other. If the result is a
diagonal line, the two elements are highly correlated. In the figure, we map one
description elements against the class labels which shows nicely the distribution
of the individual categories.

Multi-dimensional scaling (MDS) is one very effective approach for the second
– holistic – approach to feature space visualization. MDS aims at compressing
the description elements of media objects fi ∈ F into – usually two-dimensional
– vectors xi by solving the following optimization problem:

min
xi

∑
i<j

(xi ⊗ xj − fi⊗̄fj)2 (7.14)

That is, find vectors xi that minimize the difference between the original
distance relationships of the fi. The quality of the mapping is operationalized
as the squared distance. The expert reader will find it non-surprising that MDS
was developed by specialists for human similarity perception. Applying the dot
product (positive convolution) on the target vectors but L1 distance (negative
convolution) on the original vectors implements a so-called dual process model –
which should according to the latest theory come closest to the human perception
of similarity. See Chapter 28 for details. Hence, the down-mapping should
preserve as much as possible of the way that humans would find characteristic
about the high-dimensional feature space.

The remainder of this section is dedicated to understanding descriptions by
statistical testing. We do not intend to provide a short guide to testing – such
tutorials are available in masses on the Web. Instead, we would like to point
out the most important tests, situations where they may be applied beneficially
and the most relevant distributions that description elements may have.

We already mentioned the two major distributions that description elements
may have. theoretically if the media objects under consideration are represen-
tative of their domain, the distribution of each description element should be
uniform, i.e. each value should appear with the same likelihood. Then, feature
space would be used ideally by distributing the categories over the entire space
and maximizing the space between categories (theoretically). In practice, most
description elements follow the normal distribution, i.e. some values appear with
very high frequency and others with low frequency. The normal distribution has
some properties that make it very interesting. Most importantly it has the high-
est entropy that a unit distribution may have. We will discuss this property and
its meaning for media understanding in Chapter 22.

Two statistical tests are of outstanding relevance for media understanding:
t-test and χ2-test. The first tests if a set of numbers has a particular mean.

3Which would only be true if we were flies, as mentioned in Chapter 5.
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The test value is compared against a Student distribution (similar to normal
distribution), hence the conservatism of the test can be nicely controlled through
the level of significance. The second test decides if a set of numbers has a
particular distribution. Here, the test value is an aggregated sum of squared
errors of the actual distribution against the given distribution. If the test value
exceeds the value of the χ2 distribution with n− 1 degrees of freedom (n being
the number of variables), the hypothesis is refused.

Checking for a particular mean is important for identifying description ele-
ments that actually measure the same property. Only one such element needs
to be included in more advanced filtering techniques such as factor analysis.
Checking for a particular distribution is useful, if the feature transformations
under investigation produce nicely distributed descriptions. However, in media
understanding practice this is seldom the case. Hence, it makes more sense to
apply a multivariate method such as analysis of variance (ANOVA) which pro-
vides statistics on the pair-wise dependencies between description elements in
terms of means and standard deviations. It is highly advisable to investigate
feature space by ANOVA prior to categorization.

Powerful methods exist for information filtering of descriptions. The conclu-
sion of this chapter is, therefore, to apply all feature transformations on the given
media data and extract as long descriptions as possible. In the information filter-
ing process these descriptions can efficiently be reduced while preserving most of
the original information. Furthermore, visualization and statistical testing allow
for understanding the characteristics of the feature space, which is important
for selecting the best categorization method for the data. Many categorization
methods do exist. The general concept and the most basic algorithms are pre-
sented in the next chapter.





Chapter 8

Simple Categorization
Methods

After the introduction of some fundamental concepts of categorization we discuss
methods based on decision rules, on vector spaces and distance measurement and
on dynamic association of description elements.

8.1 The Setting of Categorization

At this point of the media understanding process we have extracted descriptions
of signals by feature transformations. The signals are media objects drawn from
a media database. The descriptions may be composed of quantitative (interval-
scaled) and/or symbolic (nominal-scaled) elements. We have then merged the
individual descriptions and removed the redundancy by information filtering.
Now, the last step required to complete the big picture of media understanding
is categorizing the descriptions of the media database into classes by a classifier.
The resulting class labels express a semantic category of the source media objects.

This chapter and the next chapter introduce a particular selection of algo-
rithms and models for categorization. This chapter’s focus is on simple models
– most of them are very old. In terms of machine learning that means up to 60
years. Since they are easy to comprehend, they are ideal for being used in an
introductory chapter. The next chapter, however, introduces probabilistic cate-
gorization methods that are not at all simple (or outdated). Some of them are
indeed the state-of-the-art in some fields of media understanding. For example,
hidden Markov models are still leading in speech recognition. Our decision to

139
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put the chapter on probabilistic categorization into the first part is based on two
facts. Firstly, the rules behind probabilistic methods are few, and as soon as
they are well understood the entire domain can easily be understood. Secondly,
probabilistic methods can be applied very effectively. The training may be te-
dious but as soon as a categorization model is available, it can be employed very
efficiently. Therefore, probabilistic methods are in terms of their application
related to the simple methods discussed in this chapter.

The goal of categorization is clear. It is the reduction of a high-dimensional
description vector to a single number, the class of the media object. Here, class
connotates the existence of some context – above, we named it semantic mean-
ing. That is, the class label is only meaningful in relation to the question of the
particular media understanding problem. For example, if the problem is face
recognition, some class label 23712 may refer to a person with the name John
Drake. If the problem is sentence analysis, some label 2 may stand for Question.
We can conclude that the categorization process is a specialization process, where
data are transformed into particular meanings. Both categorization method and
class label are only meaningful in the direction of the specialization and the
number of possible specializations is as large as the number of reasonable media
understanding problems. Each media understanding process requires its par-
ticular categorization process. The fundamental approaches discussed here, in
the next chapter and in the other parts of this textbook have to be parameter-
ized and trained into the direction of the specialization. That is, categorization
methods – in contrast to feature extraction methods – must be based on highly
parameterizable models. Why not feature transformations? The purpose of fea-
ture transformation is the efficient representation of media content. It is not yet
the task of feature transformation to perform the adaptation of the media data
into the direction of the media understanding problem.

Still, categorization and feature transformation are related in the sense that
both steps perform information filtering. In the mathematical notation, we
stated that media objects, descriptions and class labels are closely related. Since
this data view on the media understanding problem is inverse to the process view
the processes must necessarily also be related. In conclusion, the major technical
difference between feature transformation and categorization is that the latter
process allows more flexible specialization.

It is important to note that whatever the media is, the same categorization
techniques can be used. Text retrieval, for example, employs models similar to
those used in face recognition, P300 detection and music genre classification.
Hence, we do not differentiate categorization methods by their input data. This
statement is not necessarily true for descriptions. If the input media database
is described by a static feature space of corresponding elements, almost any
categorization method can be applied. If the length of descriptions depends on
the media source, not all categorization methods are applicable. Then, three
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approaches are available:

1. Add white spaces (zeros) where necessary to the description until all de-
scriptions are of equal length.

2. Define categories (e.g. words) and aggregate a histogram.

3. Apply a dynamic categorization method like those discussed in the last
section of this chapter.

The first strategy is not always possible. For example, in text retrieval it is
not clear how missing adjectives should be treated. In this case – mostly, for
symbolic media – another solution has to be chosen. See Chapter 16 for more
details on this issue.

The world of categorization can be approached from many different starting
points. One is to browse through the population of methods and categorize
them by their principal approaches. Following this path we come up with four
principal approaches:

• Rule-based differentiation

• Similarity-based grouping

• Probability-based grouping

• Neural discrimination

The last type of approaches will be discussed in Chapters 26 and 29. Probability-
based approaches are the topic of the next chapter. The second group – by far
the largest in terms of different models – is discussed below and in Chapters 18,
19. Rule-based approaches are discussed in Section 8.2.

Model

Categorization

1. Training

2. Application
Description Class

Figure 8.1: The Categorization Process.

Figure 8.1 summarizes the setting of categorization. We focus on the most
important aspects only. A more thorough discussion will follow in Chapter 17.
The actual categorization process transforms a description into a class. In order
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to fulfil its job, the categorization process requires a model. The model has to
be built in a training step – in most cases. Some very simple categorization
methods do not require training. In consequence, these methods are not very
flexible when it comes to specialization to a particular context.

The sequence training, application is significant for most machine learning
approaches. The training step fulfils what we discussed above: the parameteri-
zation of a general model to a particular semantic meaning. In order to perform
the training, often, additional data are required. There are two major sources
of training data:

• References

• Ground truth (GT)

References are description vectors with the same morphology as the descrip-
tion vectors of the feature space. One or a group of references refers to one
particular class. That is, references link classes to prototypes of media events
(e.g. an average face). Reference vectors may be drawn from feature space or
be artificial vectors (defined by hand or randomly).

Ground truth is basically a set of reference vectors, each with its class label
attached. Often, more than one vector is given per class. GT is usually assembled
by human beings that rate particular media objects as members of some group.
The GT data set is built by extracting the descriptions of these media objects and
adding the class labels as extra elements. From the philosophical perspective,
ground truth is an awkward denomination, since however big the set and no
matter how many humans are involved in the labeling of the media objects,
no data set will ever come close to the truth behind any media understanding
problem. This pessimism is based on the fact that human judgments of stimuli
are subjective and to a large degree vulnerable to arbitrariness. We can certainly
not assume that the GT provider is a rational decision maker.

However, practically GT is the best we can have for the training of classifiers.
In the optimal case, it was extracted by quantitative methods from a sufficiently
large group of representative people. Very often, the GT for some new solution to
a media understanding problem is based just on the scientists who developed the
method. Such a foundation is, of course, not satisfactory. We cannot, though,
put the blame on the scientists alone. Today, it is impossible to gain merit for
assembling a high-quality ground truth for some domain. Such an undertaking
is not attractive for researchers. It is usually not paid for and many reviewers
do not ask for it anyway. Still, serious media understanding researcher should
always make sure that the ground truth employed for training and evaluation is
of the highest quality possible.

Whatever we have, references or ground truth, is for classifier training split
into two parts. The training set is employed for specialization of the catego-
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rization method. Then, the typically larger test set is employed for estimating
the quality of the trained classifier. If the quality is unsatisfactory, the entire
process is repeated with altered parameters or a different categorization method.
Evaluation procedures are discussed in Chapter 10.

Another important aspect of the setting is the fact that the entire process
has typically two levels:

• The macro level of discrimination of entire media databases

• The micro level of individual assessment of descriptions

The micro level is embedded in the macro level. In the process of discrimina-
tion of the entire data set under consideration the micro process is executed for
individuals of the population. Practically, the micro level may be the judgment
of individual descriptions, the comparison of one description to a reference or
the pair-wise comparison of descriptions. The important fact is that the micro
process is more or less independent of the macro process. Hence, the same micro
process, for example, distance measurement, can be found in a number of dif-
ferent macro processes. We differentiate the last two sections of this chapter –
both dedicated to similarity-based categorization – into methods that lay more
weight on the micro process and methods characterized by their macro process.

Eventually, the macro process is responsible for the flexibility of a catego-
rization method. Specialization is doubtless required and desired by a good
classifier, but limits do exist. Flexibility is usually measured on a scale with the
extremes rigidity and overfitting. A rigid macro process is not able to adapt
to the requirements of a particular media understanding problem. The results
are always the same independent of any training. In consequence, no references
nor ground truth is required. One example for a perfectly rigid macro process
is cluster analysis (see below). On the other end, a perfectly flexible process is
prone to overfitting, i.e. too close adaptation to the ground truth. Then, every
new instance of a media event is categorized exactly as the ground truth data.
If the GT was perfect, this behavior would be desirable. Due to the practical
limitations discussed above this is unfortunately almost never the case. What is
practically desired, is a classifier that generalizes well. Such a classifier is neither
rigid nor overfitting. It is flexibly adaptable to the constraints of a particular
domain but not completely dependent on the training data. Machine learning
research is still searching for this classifier.

Are there any particulars for symbolic descriptions? Not generally. On the
macro level, if the symbolic descriptions are not of fixed length, it makes sense to
normalize them by histogram aggregation or by introducing white-spaces where
necessary. The more important adaptations have to be made on the micro
level. Rule-based approaches can deal with any type of data. Similarity-based,
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probability-based and neural process, however, may require some type of quan-
tization of the symbolic data. In similarity-based categorization, a number of
successful symbolic measures have been defined. These will be discussed in the
last two sections of this chapter. Probability-based methods require the first-
time transformation of symbols to likelihoods of occurrence. Again, numerous
solutions have been developed over the last decades. Eventually, for neural ap-
plication symbols need to be transformed to a binary representation which can
be performed easily. The macro process of categorization is not affected by these
means of quantization.

In conclusion, categorization methods make descriptions specific to some con-
text expressed in training data such as ground truth. Classifiers have to provide
models flexible enough for this adaptation but rigid enough for avoiding overfit-
ting. In the next section, we introduce rule-based solutions for this problem.

8.2 Rule-Based Categorization

Rule-based categorization methods differentiate classes by conditions of the fol-
lowing form:

if f < ε then
follow left branch

else
follow right branch

endif

Here, f is a description element, ε is a threshold, the left and right branches
may be conditions, trees of conditions or class labels. These conditions are also
called weak classifiers or decision stumps. We will investigate them in greater
detail in Chapter 19. The result of nesting such conditions is a decision tree.

f1 < ε1

f2 < ε2

f3 < ε3

c1 c2 c3 c1 c3 c2 c2 c1

Figure 8.2: Decision Tree Example.
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Figure 8.2 shows an example of three layers. As we can see, different descrip-
tion elements are investigated at different levels, and multiple paths may lead
to the same class label.

Decision trees can easily be constructed from ground truth data by a bottom-
up strategy. That is, all descriptions in the ground truth with the same class label
are grouped. Then, for each class, a condition is defined for the most invariant
element of all group members. The tree is constructed iteratively by joining
conditions on the same description element or merging independent subtrees
by choosing a new description element for the next level. Such a strategy can
be implemented easily and quickly. Typically, decision trees have much fewer
levels/dimensions than the description vectors. That is another reason for the
high efficiency of decision trees.

Obviously, the decision tree is a very powerful method. The micro level is
just comparison of description elements to a threshold. The threshold is set
during the training process, static, and different from level to level. The macro
level is a sequence of comparison operations. This scheme is as well applicable
on quantitative data as it is on symbolic data and on descriptions of variable
length. The application can be performed as quickly as the training process.

Against these advantages stands one major drawback. Decision trees are
very prone to overfitting. The quality of the categorization outcome depends
completely on the quality of the ground truth. Since in practice almost any
ground truth is only partially true, the categorization is also only partially cor-
rect. Decision trees do not provide any form of rigidity. Their generalization
behavior is therefore very bad.

Various approaches exist to overcome the overfitting problem of decision
trees. The random forest algorithm is one very popular approach. It consists of
the following steps:

1. Select n subsets fi of the ground truth.

2. Train a decision tree ci for each set fi.

3. Categorize descriptions with the most frequent label produced by all deci-
sion trees ci.

The random forest algorithm is a composition of small decision trees. In
machine learning, such an approach is called an ensemble method (see Chapter
19 for details). Since it applies a divide and conquer strategy during training
its performance is worse the performance of a decision trees. However, the
usage of an ensemble of specialized decision functions introduces some degree of
generality. Each decision tree expresses a particular point of view. The different
natures of the ground truth segments may cause variable views in the random
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forest. As a result, the joint decision may be more general than the decision of
a global tree.

Decision trees and random forests are used in many media understanding
applications today. The training is usually performed on a rather small fraction
of the ground truth while the rest of feature space is used as the test set. De-
cision trees are particularly effective for minor media understanding problems
(such as classifying photos of two types of vegetables). They are, therefore,
highly recommendable for student projects. However, for big problems such as
unconstrained video surveillance decision trees can at most serve as the macro
process in a cyclic media understanding process. For example, based on some
other categorization, a decision tree could decide whether an observed event is
dangerous or not.

In conclusion, the biggest advantages of decision trees are excellent results for
limited ground truth and efficiency, in particular, on high-dimensional data sets.
These advantages are paid with bad generalization, i.e. a remarkable tendency
to just representing the ground truth. In the next section, we will introduce
methods that are close to the other extreme of categorization, perfect rigidity.

8.3 Distance-Based Categorization

This section summarizes methods where the micro process is distance measure-
ment of corresponding description elements. The macro process is variable and
depends on the type and number of available training data. The methods gath-
ered in the next section do also employ distance measurement but in a dynamic
form. Not corresponding elements are compared but elements with optimal dis-
tance (depending on the optimization goal).

This section starts with a brief introduction of distance measures for similar-
ity measurement. We describe cluster analysis as an example for a categorization
method applicable without training data or test data. Then, the vector space
model, k-means and k-nearest neighbor categorization are discussed for situa-
tions where exactly one reference, n references or ground truth is available for
training and application. More complex categorization methods of this type are
introduced in Chapters 18 and – partially – 19.

The two central ideas of all distance-based methods for categorization are
that distance is a measure for similarity and the distances between objects and/or
references can be employed to group (cluster, classify) them.

There is a lot that could be said about the relationship of similarity and
distance. It has been subject to psychological research for more than eighty years
now. Some of the details will be discussed in Chapter 28. The most important
fact is that, for humans, distance m−1 is certainly not inverse similarity m. The
relationship is rather seen as exponential: m = ef(m−1) where f is a negative
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function. These findings have been neglected in distance-based categorization
so far with the effect that machine categorization produces – unsatisfactory –
results significantly different from human expectations.

Distance measurement is usually based on metric functions. Such functions
have been designed in mathematical research since the mid-nineteenth century.
Therefore, a large number of variations is available today. See the first section
of Appendix B for a collection of metric (and non-metric) distance functions.
These measures are systematically discussed in Chapter 28.

A measure m is called a metric if it fulfils the following conditions:

m(x, x) = m(y, y) (8.1)
m(x, y) ≥ m(x, x) (8.2)
m(x, y) = m(y, x) (8.3)
m(x, z) ≤ m(x, y) +m(y, z) (8.4)

These conditions (variations in formulation are possible) are called the metric
axioms. They are perfectly reasonable if distance measurement is seen as a
rational approach for measuring the length of the path between two points x, y.
However, if distance measurement is employed for modeling similarity (a non-
rational, psychological concept), the metric axioms are too rigid. For example, it
has been proven wrong that symmetry (the third conditions) holds for all stimuli.
It is rather the case that more complex stimuli are always found less similar
compared to others than the other way around. See Chapter 28 for details.
Still, mostly metric distances are employed for distance-based categorization
today.

1
2

1

2
∞

Figure 8.3: The Minkowski Distances.

One particularly important group of metric distance measures is the Min-
kowski distances group. The family of parameters a1, a2 is defined as follows
(measure Q1 in the appendix).
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a2

√∑
i |xi − yi|a1

K
(8.5)

Traditionally, a1 = a2. Psychologists have found out that sometimes a root
different from the exponent describes the human perception of distance/similarity
better. Figure 8.3 illustrates the four most important Minkowski distances for
a1 = a2. If a1,2 = 1 we receive the city block distance, if a1,2 = 2 Euclidean
distance, and if a1,2 = ∞ the Chebyshev distance. If a1,2 < 1 the Minkowski
distances become non-metric. This case was not intended originally but, again,
psychologists could show that under some circumstances distances with an ex-
ponent smaller than one fit better to human distance perception.

Figure 8.4: Histogram Intersection Example.

Table B.1 in the appendix lists all major distance functions. One that is of
particular interest to us is histogram intersection (Q15):

∑
i min(xi, yi). This

method simply counts the overlapping regions of two data sets. Figure 8.4
illustrates the approach where the gray area is the overlapping part. Today,
this method is frequently used for comparing color histograms in visual media
understanding. It can be applied to any histogram data (e.g. correlograms,
edge histograms) and usually produces good results, i.e. a categorization that
appears reasonable to humans.

In the remainder of this section, we introduce four methods for categorization
that employ distance functions. The first method requires no training data. The
next two require references, and the last one requires a ground truth.

f1 f2 f3 f4 f5

Distance

Figure 8.5: Dendrogram Example.



8.3. DISTANCE-BASED CATEGORIZATION 149

The first categorization method to be discussed is cluster analysis. Figure
8.5 gives an example for the result of a cluster analysis: a dendrogram. The
five media objects fi are related by their distance. The vertical position of the
horizontal line connecting two elements or branches denotes the distance between
the two objects. For example, the distance between f4 and f5 is small, while
the distance between f1 and f5 is very big. The morphology of the illustrated
dendrogram is typical for the method. Two objects are found most similar, and
all others are set in relation to them.

Cluster analysis requires no training data. In fact, the method leaves no
space for knowledge other than the descriptions. It is, therefore, a very practical
starting point for categorization. It is always advisable to run a cluster analysis
on a newly created feature space, because cluster analysis reveals the overall
structure of the data. If the majority of the objects in feature space are closely
related (like f4,f5) then the chosen feature transformations are obviously not
discriminative enough. Ideally, the dendrogram of a feature space should consist
of several near equally-sized group on levels of average distance (the classes). If
no classes can be identified in the dendrogram, then they probably do not exist,
and the employed feature transformations are not suitable for distance-based
categorization.

Several algorithms do exist for cluster analysis that are based on two con-
struction principles: top-down (separative clustering) and bottom-up (agglomer-
ative clustering). In the first case, the dendrogram is built from the top. In the
first step, the element with the largest distance is separated from the others,
in the second step the next, and so on. The algorithm can also be run recur-
sively by separating groups of n objects and running the algorithm again for
each group. In agglomerative cluster analysis first, each element of feature space
is considered a class of its own. In the first step, the two nearest classes are
merged and so on. Mixed forms of bottom-up and top-down clustering exist as
well.

Cluster analysis is a straightforward procedure for the categorization of fea-
ture spaces. In fact, the resulting dendrogram does not define classes yet. These
have to be defined by hand by setting thresholds of maximum distance between
branches of the dendrogram. The method has no parameters, is simple to use
and very recommendable as a starting point for understanding the structure of
a feature space.

The second distance-based categorization model is the vector space model
(VSM). The VSM was defined in the 1960ies for text retrieval. The idea is very
simple. In a database of media objects, we search for a query example and return
a result set of the n most similar objects. The operationalization is as follows:
The query example is one reference description vector with exactly the same
structure as the descriptions of the media objects in the database. Only two
classes are categorized: relevant are the members of the result set, not relevant
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is the rest. The retrieved objects are interpreted as the relevant objects. In
Chapter 10 we will see if this assumption is realistic.

Binary Distance

Metric
Distance

Figure 8.6: Vector Space Model Example.

Figure 8.6 illustrates the VSM categorization process. Descriptions are in-
terpreted as vectors in a (non-)metric vector space. That is, the dimensions are
assumed to be at least interval-scaled. Therefore, distance and dot product can
be defined. Similarity is measured as the inverse of distance. Typically used
distance measures are city block distance and Euclidean distance. In the figure,
the direct dotted line between two objects (denoted as x) expresses their dis-
tance. If one of them is given the role of query example, then the result set is
the circle (or ellipse, depending on the type of distance measure) around it that
covers exactly n other objects. Value n is the only parameter that needs to be
set. In the VSM, the most similar object is always the query example.

One special application of the VSM worth mentioning here is binary retrieval.
In binary retrieval, all dimensions of the vector space are just predicates of the
form {0, 1}. That is, each property (dimension) either exists or not for a particu-
lar object. Binary retrieval is tailor-made for text understanding. Each possibly
occurring term is modeled as a binary description element. For a modern lan-
guage, the resulting description of a text segment may have several hundreds of
thousands dimensions. The rest of the process is performed as in the normal
VSM. See the line connecting the two circles in the figure for an example. The
result is, of course, a similarity measurement process that employs one of the
predicate-based measures listed in Appendix B.2. We will discuss these mea-
sures in Chapter 28 in detail. For the moment, one very popular measure is the
Hamming distance which is equivalent to the city block metric in the continuous
domain.

In summary, the VSM extends cluster analysis by one reference object and
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one parameter. The result is a categorization model for the differentiation of
relevant (with respect to the query example, few objects) and irrelevant objects
(many objects), which is the typical scenario of retrieval.

The next step in complexity is the k-means algorithm. This categorization
method requires one reference vector per class, i.e. in the simplest case two
vectors. The fundamental idea is very simple. Each description in the feature
space is compared to each reference vector. The reference vector with the lowest
distance wins and the media object represented by the description vector is
added to the class represented by the reference vector.

Figure 8.7: K-Means Categorization Example.

Figure 8.7 illustrates a k-means example. The circles are the reference vec-
tors. The crosses are the members of feature space. The example employs
Euclidean distance. Since we have three references, the results are three classes
of varying size. K-means categorization is not fuzzy. Each description vector is
attached to one reference. In the unlikely case of exactly the same distance to
two or more reference vectors, some second-order decision taking process has to
be used. The result of k-means categorization is called a Voronoi tessellation –
in the figure indicated by the dotted lines.

The k-means algorithm is a simple extension of the VSM, yet it can be very
powerful. The performance of k-means depends exclusively on the wisdom of
choice of the references. Sometimes, the reference vectors are distributed uni-
formly over the space, sometimes initialized randomly and sometimes by a cluster
analysis process. Generally, it would be desirable that inaccurately positioned
references can be moved during or before the application of k-means. An ex-
tension that implements that is the self-organizing map discussed in Chapter
19.

In summary, k-means is a simple, quick categorization algorithm for n ≥ 2
classes that requires no training and may deliver excellent results if the reference
vectors are chosen appropriately. Of course, the algorithm can easily be extended
to representing classes by more than one reference – for example, by using the
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mean vector of all references associated with a class. Alternatively, the references
can be applied separately but associated with the same class labels.

The last distance-based algorithm to be discussed here is the k-nearest neigh-
bors algorithm (k-NN). K-NN is related to k-means but requires more-sophis-
ticated training data. Instead of a few reference vectors, we require a ground
truth, i.e. a feature space in which each object has a class label. On this foun-
dation, the k-NN applies a simple association algorithm. Each new description
is positioned in the underlying vector space and then of the k nearest neighbors
in the ground truth (i.e. the would-be result set of VSM, if the new description
was the query example) a histogram of the class labels is computed. The class
with the largest number of neighbors wins. The media object connected to the
new description is labeled with the winning class.

Figure 8.8: K-Nearest Neighbor Categorization Example.

Figure 8.8 gives an example of k-NN. The new vector is dotted. The two
groups are given as circles and crosses. Since more crosses can be found in the
neighborhood k = 7 the new vector is considered a cross. The advantages of k-
NN are obvious. The algorithm is very simple, very fast and requires no training.
On the other hand, it makes relatively little of the complex ground truth. Other
methods, such as those discussed in Chapter 18 employ sophisticated training
in order to optimize the quality of the categorization process.

Cluster analysis, VSM, k-means and k-NN are four highly related algorithms.
All four are based on the vector space assumption, employ distance measures
and rely on the constraint that corresponding description elements have the
same meaning. The major difference is the training set. While cluster analysis
needs nothing and VSM, k-means can do with a few references, k-NN requires
an entire ground truth. In return, cluster analysis gives only a general overview
over feature space. VSM is tailor-made for retrieval applications. K-means and
k-NN can be very effective (and practically relevant) if the references/ground
truth data are selected with care. In the subsequent chapters, we will encounter
a number of methods that are based on these principles.
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In conclusion, we presented a number of categorization methods that are
based on distance measurement. The common advantage of these algorithms
is their good performance due to the simple models employed. Furthermore,
they scale relatively well with increasing dimensionality of feature space. Their
common drawback is their simplicity, which may increase the gap between media
semantics and descriptions even further in the categorization step.

In the next section, we will likewise encounter categorization algorithms that
employ distance measures. However, there, some optimization criterion is added
to the measurement process that leads to a selection problem of the form: Which
elements of two descriptions fit together best?

8.4 Dynamic Association Models

Rule-based categorization is applicable on any type of data. Distance-based
categorization requires the definition of some measure m. If m can be defined
reasonably, then the entire zoo of methods can be applied no matter if we deal
with text, bioinformation, visual descriptions or some biosignal. That is equally
true for the dynamic association models discussed below though these models
provide one degree of freedom more than the static distance-based models. The
attribute dynamic stands for dynamic association of best-fitting elements of two
descriptions. That is, the micro process of categorization is embedded in an
optimization process that aims at identifying the best mapping between two sets
of elements – here, not arrays!

Normally, dynamic connotates change over time. That is not the case for the
models discussed in this section. Categorization methods that change (learn)
over time are discussed in Chapter 19. The methods of this section are only
dynamic in terms of association.

As we will see below, the micro processes and the optimization processes
of dynamic association models are usually well defined. The macro process,
however, may only exist rudimentary. For this reason, dynamic association
methods can also be seen as plug-ins for the micro process of some other method.
For example, the bag of words methods can easily be embedded in a k-nearest
neighbor algorithm. Many other combinations are thinkable.

In the remainder of this section, we deal with three types of dynamic as-
sociation models. The first type is the bag of something method of which we
have already seen an example in Section 5.1. The second type is the dynamic
warping method, which is very popular in bioinformation processing as well as
audio retrieval. The last type is the group of similarity meta-models, which are,
for example, employed in shape recognition.

The bag of something methods, in particular bag of words if the descrip-
tions consist of text or bag of features if the descriptions are quantitative, are
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somewhere in the middle between dynamic association models and traditional
distance-based methods. They certainly employ an optimization criterion, since
for every part of the description of one object the best match is identified in the
other object. The best match may be expressed as the lowest distance or best
sub-string match, for example. On the other hand, the optimization criterion
need not be (and normally, is not) applied on the element level (one symbol,
one quantity). Rather, groups of elements (so-called concepts) are formed (e.g.
words, phrases, color histograms of sub-images, etc.) and the optimization is
performed on the group level. That is, if the entire media content is defined as
one group, we arrive at normal distance measurement. If the groups are broken
down to individual symbols, we arrive at a real dynamic association process.

The bag of something methods work for a pair of media objects and pre-
defined concepts precisely as follows:

1. Identify the concepts of one object in the other object.

2. Summarize the number of matches. If necessary, matches can be grouped
again (e.g. spatially, by quality, etc.).

The number of matches is a measure for the similarity between the two
objects. Please note that the bag of something methods do not prescribe a
particular distance measure for the micro process. Often, Minkowski distances
are employed but any other measure can be used instead. Therefore, the bag
of something methods are plug-ins of some macro process that may use any
micro-process as plug-in. This very flexible scheme is heavily used in text un-
derstanding and on so-called local features which we will encounter in Chapter
14.

x

y

Figure 8.9: Dynamic Time Warping Example.

The dynamic warping methods are dynamic association models par excel-
lence. We named this group after one approach very popular in audio classi-
fication: dynamic time warping (DTW). Figure 8.9 gives an example for the
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algorithm in which two objects (represented by descriptions x, y) are compared
pair-wise by their descriptions. The depicted data may stand for any type of
description (either quantitative or symbolic). Now, the optimization goal of
DTW is to identify the best match between the two description sequences while
allowing insertions and deletions. That is, the algorithm is not totally ignorant
of the vector structure of the descriptions.

The recursive DTW algorithm solves the following problem:

mdtw(x, y)→ min (8.6)

with

mdtw(x, y) = m(xi, yj) +min


mdtw(xi−1, yj−1) match

mdtw(xi−1, yj) insert

mdtw(xi, yj−1) delete

(8.7)

Here, m is some measure and the counters i, j start at the last elements of
x, y. By the way, x, y need not be of equal length. In the straightforward case of
a diagonal walk we have a match. From the perspective of object y the second
possibility for minimization is an insert of a copy of the actual symbol, since
one more element of x is mapped on the current one of y. The last option is
considered a delete because one element of y is ignored. The resulting mdtw

accumulates the optimal distance through the matrix of possibilities (illustrated
in the figure).

The DTW problem is usually solved recursively. The currently best algorithm
is only of little interest to media understanding. However, employing a recursive
algorithm is not just natural to the problem definition, but it allows to reduce
the magnitude of the problem from O(n2) to O(n. log n).

Dynamic time warping is used frequently in audio retrieval for matching
the descriptions extracted from spoken words. Such descriptions are typically
not of uniform length, which makes DTW one of the few options for efficient
categorization. In particular, on resource-limited systems DTW is a good option
for categorization, because then, the state-of-the-art Markov processes (next
chapter) are often not applicable.

So far, we focused on DTW as one dynamic warping method. The abstracted
model of DTW is the so-called edit distance. The general principle of the edit
distance is that the difference between two objects is the result of editing one
of them. Therefore, the similarity (distance) between a pair of objects can be
measured by the number of operations required to transform one into the other.
In DTW, we had the three operations match, insert, delete. A second model,
the Levenshtein metric suggests the three operations insert, delete, substitute.
This metric is usually employed on symbolic descriptions (primarily, text). It is
considered a generalization of the Hamming distance (measure P3 in Appendix
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B.2) which is used in typewriter programs for identifying the best match of
incorrectly spelled words. Like DTW, the Levenshtein metric requires a dynamic
programming algorithm for the identification of the best solution.

Edit distances are currently heavily investigated in psychological research.
For example, the authors of [147] suggest to combine edit distances with the
human choice model of the following form:

medit(x, y) =
medit(t, y)

medit(t, x) +medit(t, y)
(8.8)

Here, t is some reference stimulus. This model allows to introduce some
semantic context (expressed in t) into the measurement process. The authors
claim that this model fits human structural alignment. In Chapter 28 we will
hear more about choice models, structural alignment and their combination.

One reason why structural alignment and edit distances are now a hot topic
of psychological research may be that the same dynamic warping approach is
employed in bioinformation understanding for sequence similarity measurement.
There, the goal is to measure the overall similarity of two gene strings (or sub-
strings). The current state-of-the-art approach is the Needleman-Wunsch algo-
rithm which is nothing else than dynamic time warping where the Levenshtein
metric is used for distance measurement. The only particular aspect of this
algorithm is a penalty score for insert and delete operations.

Furthermore, bioinformation processing employs a very similar algorithm for
local alignment of gene strings. Local alignment aims at identifying the best
matches between two sequences of symbols. The solution, the Smith-Waterman
algorithm is again a DTW process with one additional condition. Empty sub-
strings are aligned at zero costs.

In summary, dynamic warping is of high relevance for both quantitative and
symbolic data. The optimization process aims at optimal structural alignment
of a pair of descriptions. The micro process may employ any similarity function
even though edit distances are frequently used on symbolic data. Dynamic
warping can be used as a stand-alone categorization method but likewise, be
embedded in any other process. The most frequent application domains are
speech and bioinformation.

Figure 8.10 gives an example for a third type of dynamic association models:
similarity meta-models. The figure illustrates the measurement results of two
typical models. The Hausdorff distance and the bottleneck distance (listed as M5
and M6 in Appendix B) consider the two given descriptions as sets of elements
(visually, points). They measure the typical distance of the two sets by choosing
largest (supremum) and smallest (infinum) distances mi between pairs of points.
The distance is eventually represented by the relationship of just two points. The
Hausdorff model is frequently applied in visual shape retrieval. Both measures
may be applied for graph matching and related tasks. Which method to choose
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Hausdorff
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Bottleneck
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Figure 8.10: Shape Comparison by Distance Meta-Models.

depends on the desired goal. The optimal form of selection is the definition of
a thorough ground truth, evaluation of all available categorization models and
selection of the one that fits the ground truth best at acceptable overfitting.

Two further similarity meta-models are M2 and M7 in Appendix B.3). The
first one, the Catell measure is not really a dynamic model. It is more a nor-
malization of distance measures. However, the meta-model may be subject to
optimization, which may alter the distance relationships expressed by mi.

Measure M7 is the Mallows distance, which is (slightly differently defined)
also known as the Wasserstein distance or the earth mover’s distance (EMD).
In particular, the EMD is of highest significance in audiovisual media under-
standing. It is employed for all kinds of histogram comparisons where it tries
to identify the global minimum of a product of distance and cost of transfer.
Distance is defined by a measure mi. Cost of transfer (for example, between
histogram entries) is defined by a function c. Over all permutations of one de-
scription vector, EMD searches for the minimum of distance to the second vector
while taking the costs of permutation (movement by unit) by function c into ac-
count. The name earth mover’s distance illustrates the principle well. The total
cost of moving earth from one point to another is constrained by the distance
between the points and the costs of transport.

The EMD shows similarities to a number of other models. First of all, it
is related to histogram intersection. Both methods endeavor to identify the
common aspects of two descriptions. Secondly, it is related to the edit distances.
The cost function introduces a degree of freedom that may be interpreted as
some sort of manipulation. Moving values from one element to another can
be interpreted as a sequence of one delete operation and one insert operation.
Therefore, the EMD (generally, the Mallows distance) may also be seen as a
dynamic warping model.

One last similarity meta-model that we would like to mention in this section
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was defined in [143]. The authors propose a similarity model that originates from
text understanding but relies on a distance-based micro process. The optimiza-
tion algorithm consists of two steps. In the first step, all objects in feature space
are compared pair-wise. In the second step, the best matches are aggregated.
Here, best is defined by a set of criteria partially motivated by insights on the
nature of human similarity perception. The authors propose a particular micro
process, a measure called systematic similarity that resembles the human choice
model. However, any other model may be employed instead. This model ap-
pears interesting though for practical application some hurdles have to be taken.
The descriptions have to be provided as a hierarchy of entities and attributes
(due to the computational linguistics’ origin of the method). Selection of the
best description elements is very important for the performance of the measure.
Furthermore, the measure depends on a threshold µ0 which has to be set with
care. On the other hand, the algorithm can be employed as some kind of edit
distance as well, which makes it interesting as an integrative approach.

In summary, similarity meta-models can be employed to categorize any type
of data. The most frequent domains are text understanding, visual shape re-
trieval (for example, by interest points, see Chapter 14). One question that arises
is: Which method should be used when? This is, eventually, a question of expe-
rience. The experienced visual retrieval researcher will know when to employ the
Hausdorff distance and when, for example, dynamic warping. For the beginner,
one reasonable advice appears is to try all available methods and choose the
one that performs best. We will develop the details of this scheme further in
the Chapters 11 and 21. For practical application, Weka [378] provides a good
starting point, since this package implements many important categorization
methods as well as a comparison process for categorization methods.

We would like to conclude this chapter by emphasizing again that catego-
rization is not fundamentally different from feature transformation. Both steps
aim at data reduction, the latter generally, the first for some context. The cat-
egorization process can be divided into a micro process of pair-wise comparison
of descriptions (some object against the context) and a macro process for the
management of the entire media database. In the Chapters 11 and 21 we will
provide an in-depth analysis of the components and steps of the various catego-
rization approaches. We will endeavor to link the steps to those taken in feature
transformation.1 The result will be that, actually, the methods are related in
several respects.

The methods discussed in this chapter have in common that all of them
employ rather simple models. Most of them are heavily dependent on the di-
mensionality of the employed data. That is, the performance of these methods

1That is, we apply a media understanding process on the methodology of media under-
standing.
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tends to fall over-linearly with increasing dimensionality. In the next section,
we encounter methods with different characteristics: complex models, costly
training, excellent performance: the probabilistic categorization methods.





Chapter 9

Probabilistic Categorization

Introduces fundamental concepts of probabilistic inference, discusses independence-
based models such as the Bayesian classifier, explains the general concepts of
Bayesian networks and their application in Markov processes.

9.1 Foundations of Probability Theory

The categorization approaches discussed so far relied on given information: the
model, references or ground truth. If the given data represents the media under-
standing problem well, the performance will be good. If not, then not. In this
chapter, we introduce a new concept. We employ statistical methods, namely
probability theory, on the given data in order to come to a better understanding
of the input data and, eventually, of the media understanding process.

This chapter summarizes probabilistic approaches to categorization. In the
first section, we introduce all required concepts (e.g. Bayesian inference) and
discuss relevant practical issues such as sampling of probability densities. The
second section deals with probabilistic categorization methods that rely on the
assumption that description elements are independent of each other. The third
section goes one step further by allowing conditional dependencies between de-
scription elements, which results in the general theory of Bayesian networks. In
the last section, we introduce several Markov processes as examples for particular
types of Bayesian networks that have proven successful in media categorization.

Figure 9.1 sketches the general probabilistic categorization problem. It is
not fundamentally different from the categorization model introduced in the last
chapter. Again, we have a training step in which the probabilistic model, essen-
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Figure 9.1: Probabilistic Categorization.

tially a transition matrix for all possible events, is computed from training data.
The model is applied on descriptions in the application step. The result is non-
surprisingly some class labeling. As we will see below, training of probabilistic
models can be a tedious task. The application, however, is usually very efficient.

Probabilistic models are often visualized as graphs where the nodes represent
states and the edges transitions between states. Figures 9.2 and 9.4 are examples
of graph representations. The outer form is the same as in state transition
graphs. The inner meaning, however, is slightly different. While in the case of
state transition graphs, the transitions are deterministic and triggered by certain
events, in probabilistic graphs the transitions are only described statistically.
That is, in m of n cases the transition happens, but it cannot be predicted if the
transition happens in one particular situation.

For calculations such as those in a categorization process, the graph view is
not efficient. Then, the knowledge of a probabilistic classifier can be expressed
in superior form as a series of matrices of all events that may occur jointly.
For example, in a situation where we have two binary events x and y with the
probabilities P (x) = 0.3, P (y) = 0.8, P (x|y) = 0.2 the table of joint probabilities
looks as follows:

x ¬x Sum
y 0.16 0.64 0.8
¬y 0.14 0.06 0.2

Sum 0.3 0.7 1

Table 9.1: Matrix Representation of a Probabilistic Network.

The joint probability of events x, y occurring together is computed by the
chain rule: P (x, y) = P (x|y).P (y) = 0.16. In the context of media understand-
ing, x may stand for a condition of the form f1 < ε1, i.e. some feature f1 is
smaller than a threshold. Event y may be defined similarly. The values of the
table can then be interpreted as the likelihoods of particular classes associated
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with the cells of the table. In the section on Bayesian networks, we will discuss
the usage of such matrices for categorization. Furthermore, we will generalize the
idea of deriving probabilistic events from description elements x, y by conditions
such as m(x, y) < εi.

Probabilistic categorization models are inference models. That is, general
knowledge about the world (the a priori, expressed, for example, as ground
truth) is combined with some new facts (e.g. the description of a query) in order
to arrive at a refined view of the world (the so-called a posteriori). Probabilis-
tic inference transforms a priori into a posteriori, practically, given descriptions
into weighted descriptions. In the context of media understanding, refined may
mean adapted to a particular class of problems, a particular query, etc. Infer-
ence from a priori to a posteriori is also called forward reasoning. Despite the
temporal connotation, often, backward reasoning is possible – typically employed
for improving the given references or ground truth.

The introductory section must also repeat the fundamental rules of proba-
bilistic calculation. The following math block summarizes all rules:

P (x = n) =
number of times, event x=n happens

number of times, event x=anything happens
(9.1)

P (x, y) = P (x|y).P (y) = P (y|x).P (x) (9.2)

⇒ P (x|y) =
number of times, events x and y happen together

number of times, event y happens
(9.3)

The first line just defines simple probabilities. Remark on notation: For
the sake of simplicity, below we write P (x) where we mean P (x = n) if n can
be considered apparent. The second line expresses actually two rules. The first
equation is the chain rule which expresses that joint probabilities such as P (x, y)
can be expressed by conditional probabilities such as P (x|y) and a priories P (y).
The second equation is the famous Bayes theorem:

P (y|x) = P (x|y).
P (y)
P (x)

(9.4)

Bayes theorem is the foundation of Bayesian inference, where P (x|y) is the
world knowledge which is weighted by the a priories in order to arrive at the
a posteriori P (y|x). Very simple, but very effective as we will see in the next
two sections. Eventually, the third line expresses the meaning of conditional
probabilities textually. It is normalizing a joint probability by its a priori part.

Bayes theorem is the major asset of all probabilistic inference methods. Its
particular strength lies in the fact that it is partially against human intuition.
As the authors of [182] could show most humans do not take a priories into
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account in their reasoning. Two famous examples should illustrate this point
well.

First example: Game show. The scenario is a game show where the candidate
must choose one of three doors and wins what is behind this door. There is a car
behind one door and goats behind the two others. The proceeding is always that
the candidate selects one door, the showmaster opens a different door behind
which a goat becomes visible and asks the candidate to reconsider. The question
is: Should the candidate change her mind?

The answer given by most people confronted with this problem is no – there
are no new facts. However, Bayes theorem says something else. If P (x) is the a
priori probability that the car is behind door x, i.e. P (x) = 1

3 , and P (y) is the
probability that one of the two doors not chosen by the candidate remains closed,
i.e. P (y) = 1

2 then P (x|y) = P (y|x).P (x)
P (y) = 2

3 . That is, the probability that a
car is behind the door which remains closed is two thirds, because P (y|x) = 1,
i.e. the showmaster would never open the door with the car behind it.

Second example: HIV test. Here, the question is: How likely is it that a US
citizen is HIV positive if his HIV test is positive? Let P (x) be the probability that
the test is positive and P (y) be the a priori probability that the candidate is HIV
positive. In the US P (y) = 0.01, i.e. only about one percent of the population
is HIV positive. Let the first degree of error (test is negative but the person is
HIV positive) be α = 0.05. Then, P (x|y) = 0.95. Furthermore, let the second
degree of error (test is positive if the person is not ill) be β = 0.01 = P (x|¬y).
Then, P (x) = 0.0194 and P (y|x) = 0.49 according to Bayes rule. That is, the
probability is less than fifty per cent!

In conclusion, Bayes weighting is a very strong mechanism of transforming a
priori probabilities into context-specific a posteriori probabilities that should be
employed for the benefit of better categorization.

s1 s2 s3 s4 s5

Figure 9.2: Gibbs Sampling.

In order to do that we have to solve the – central – sampling problem: the
provision of the density functions P (x) and the conditional probabilities P (x|y).
This can only be done if a fraction of reality is observable. Then, two major
methods are available.
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• Gibbs sampling

• Expectation maximization

Gibbs sampling simulates the probabilistic process that should be described
and aggregates the densities from the simulation output. Figure 9.2 shows an
example. For the given training data, the five-step process is iterated and by
doing that values for P (si) and P (si|sj) are aggregated. That is, the sequence
of occurrence of the events matters. The quality of the result depends on the
quality of the training data. Gibbs sampling is an example for a Markov process.
The construction of densities can be characterized as probabilistic.

Expectation

Maximization

Guessed
Model

Refined
Model

Figure 9.3: Expectation Maximization Algorithm.

Expectation maximization, on the other hand, is a deterministic process.
Figure 9.3 shows the two steps and their respective results. The density functions
are modeled as functions f(x, a) where a is a parameter vector. For example,
f may be a normal distribution and a = (µ, σ). The algorithm employs the
following steps:

1. Estimate the parameter set a. The first guess may be random.

2. Compute the gap between the resulting f and the training data. Adjust
the parameters a accordingly.

3. Return to the first step until the gap is smaller than a pre-defined threshold.

Hence, expectation maximization employs a rigid model that is adapted to
the given evidence (training set). This method is less flexible than Gibbs sam-
pling but less prone to overfitting to the training set.

Overfitting is a general problem of density estimation. One popular method
to limit the effect of the training data on the estimation process is Monte Carlo
sampling. The idea is very simple. Instead of the actual training data x, we
employ randomized data r(x) – r being the randomization function. If r is
chosen appropriately the iterated process may eliminate an undesired bias in
the training data. Typically, r may be Gaussian-like function that distributes
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the measurements in the form of the normal distribution. This randomization
causes movement towards some pre-defined mean. Monte Carlo sampling can
be combined with both Gibbs sampling and expectation maximization. Since
both methods aggregate the input of the entire training set it is guaranteed that
the randomization function does not introduce white noise. The practical side
of sampling will be touched in the next chapter.

Before we dive into the pool of probabilistic methods, we would like to empha-
size some major differences between deterministic methods (like those discussed
in the last chapter) and probabilistic methods.

1. The type of model is fundamentally different. Deterministic methods work
directly on the data and are able to compute quantities as well as predi-
cates. Probabilistic methods require some pre-processing step that trans-
forms quantities into proto-predicates. Since this transformation is already
a categorization process, probabilistic methods can be viewed as operating
on a meta level.

2. Deterministic classifiers base their decisions on similarity to references (e.g.
k-NN, k-means) or the maximum distance of references (such methods will
be discussed in the second part). They hardly take a priories into account.
Probabilistic methods base their decisions on weighting of given facts by
a priories which produces a statistical truth that may be perceived as
counterfactual by humans.

3. Deterministic methods employ training data mostly in a separative way.
That is, description elements are compared to corresponding ones but no
co-occurrences are considered. This is only partially true for dynamic asso-
ciation models which, in return, require optimization algorithms that make
them less deterministic (danger of local optima). Probabilistic methods per
se emphasize joint events without a need for optimization.

In conclusion, probability theory is a promising starting point for the devel-
opment of categorization methods that take correlations of events (descriptions)
into account. The major practical limitation is the provision of expressive prob-
ability densities. If this problem can be overcome, Bayesian inference models
such as those discussed in the next two sections can be employed for successful
media understanding.

9.2 Independence-based Categorization

The classifiers discussed in this section have in common that they assume joint
probabilities P (x, y) to be the product of components P (x, y) = P (x).P (y).
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That is, the components x, y are independent of each other. Since this assump-
tion is quite unrealistic these methods are called näıve.

In media understanding terms, this means that we assume the description
elements to be independent of each other. Since this is hardly ever the case
in one of the methods discussed in the first part of this textbook, it is always
recommendable to run a factor analysis before independence-based categoriza-
tion. Factors are linearly independent of each other which – at least in the
mathematical sense – justifies considering them as semantically unrelated.

Below, we focus on two approaches: the Bayesian classifier (BC) and the
binary independence model (BIM). The BC is a simple form of a Bayesian net-
work (see next section) while the BIM is a specialized form of a probabilistic
model for information retrieval. Both methods employ Bayes theorem and are
very efficient.

The Bayesian classifier is not necessarily a näıve method. It is just the fre-
quent practical application that associates BC with the independence assump-
tion. The BC categorizes the input data x ∈ F in ci ∈ C classes by the following
rule:

BC(x) = ci with i = arg max
c
P (ci|x1 ∧ x2 ∧ .. ∧ xn) (9.5)

Applying Bayes theorem the probability term of the criterion can be trans-
formed to the following a posteriori:

P (ci|x1 ∧ x2 ∧ .. ∧ xn) = P (x|ci).
P (ci)
P (x)

=
P (x|ci).P (ci)∑
j

P (x|cj).P (cj)
(9.6)

That is, the maximal conditional probability of descriptions and classes is the
winner (maximum likelihood principle). Building the conditional probabilities
P (x|c) requires sampling from a given ground truth (samples + labels). In
particular, for every class samples of all possible combinations of description
elements should be given. Such an estimation process would be called a joint
density estimator. Since a sufficiently large ground truth is hardly ever available,
the näıve BC assumes the elements of x independent: P (x|c) =

∏
j P (xj |c).

Then, only pairs of description elements and classes P (xj |c) have to be sampled,
which can be done by simple Gibbs sampling.

Alternatively, the conditional probabilities P (xj |c) can be assumed to be
Gaussian and expectation maximization can be applied. In this case, the sam-
pling problem is shifted to identifying the best parameters of the normal distri-
bution for the given ground truth data. Such a Bayesian classifier is called a
Gaussian Bayesian classifier. It is still näıve but less close to the ground truth
than the Gibbs sampled classifier.
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Recently, efforts have been undertaken to limit the negative effect of the in-
dependence assumption in categorization by the BC. The random fern approach
suggests not to assume all elements of the input data as independent but to
compute joint densities for the most important elements. Here, most important
can be operationalized as semantically related, for example. The introduction
of this idea opens a continuum between the poles of independence assumption
and joint density estimation. Hence, depending on the ground truth the quality
of the results should also be somewhere between the given extremes.

Practically, the BC is in all its forms a very popular classifier. The usage
of Bayesian inference in a simple model provides an effective tool for quick cat-
egorization. The major limitation is the independence assumption which is, in
particular, in the field of media understanding, simply unrealistic. We recom-
mend using the BC for the first orientation in the media understanding process.
Feeding a BC with a small ground truth shows the potential of a particular set
of feature transformations. Even for the best categorization methods it should
usually not be possible to outperform the Bayesian classifier by too far.

The binary independence model was originally developed for text information
retrieval [109]. It assumes input descriptions with binary predicates as elements.
These elements are usually interpreted as presence/absence values of terms in a
document (predicates). However, BIM could in the same manner be used with
any other interpretation of the descriptions.

The goal of BIM is to rank the members of a media database by relevance
to a given reference (in retrieval, a query object). In the following, we denote
the description of the reference as f and the description of one object as x. BIM
computes a retrieval status value (RSV) for any x, ranks the media objects by
the RSV and assumes the first n objects as relevant and the rest as not relevant.
That is, BIM performs a binary categorization.

The RSV is computed from the odds that a particular x is relevant to r
against x being not relevant, i.e. relevant to ¬r. The derivation goes as described
in Equation 9.7.

The first line defines the odds of relevance against irrelevance. Then, we
apply Bayes rule and remove weights that appear twice. From second to third
line we get by assuming independence of the description elements xi. Then, we
split the product in two by distinguishing between present predicates (xi = 1)
and others. The first term remains unaltered in the final formula. The second,
however, is transformed using two assumptions. Since RSV is only used to order
media objects, all terms that do not exist in the reference (ri = 0) are ignored.
Secondly, for the rest, the definition P (x = 0|r) = 1 − P (x = 0|¬r) is stated.
That is, if a term does not exist, we assume that it may be as likely relevant as
irrelevant. These assumptions allow for the merging of the two products.
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RSV (x) =
P (r, x)
P (¬r, x)

=

=
P (x|r).P (r)

P (x|¬r).P (¬r)
=

=
∏ P (xi|r)

P (xi|¬r)
=

=
∏
xi=1

P (xi|r)
P (xi|¬r)

.
∏
xi=0

P (xi|r)
P (xi|¬r)

=

=
∏

xi=ri=1

P (xi|ri)
P (xi|¬ri)

.
1− P (xi|¬ri)
1− P (xi|ri)

(9.7)

Practically, logRSV (x) is used for ranking, because then the product is re-
placed by a sum which can be computed faster. The BIM was developed for
ranking of text documents [109]. Still, the mechanism is applicable to all me-
dia descriptions that employ predicates (for example, in media understanding
of media understanding). Then the usage is limited to situations where the rel-
evance/irrelevance of description elements has a semantic meaning (as in text
understanding). So far, the BIM has been widely neglected outside the informa-
tion retrieval domain. We believe that this method may be an interesting alter-
native to distance-based methods employed today in content-based audiovisual
retrieval.

The major difficulty of using the BIM is – as always in probabilistic catego-
rization – the sampling of the P (x|r) values. The last step of the derivation is
primarily performed for simplifying this problem, since it reduces the number of
required density values. Thanks to the independence assumption, training a bi-
nary independence model requires only a small ground truth – with the downside
that the independence assumption is not realistic in media understanding.

In conclusion of this section, we have introduced two frequently used prob-
abilistic models that employ Bayes theorem in order to get from an a priori
situation to a contextually relevant a posteriori. Both methods assume descrip-
tion elements to be independent – which is mostly not the case in reality, but
helps overcoming the problem of density estimation. The effect of BC and BIM
on dimensionality and, hence, performance of the media understanding process is
very positive. Very high-dimensional feature spaces can be processed efficiently.
On the other hand, the training requires a well-balanced ground truth which is
hard to define. In the next section, we will introduce a generalized model of
Bayesian inference that can be employed on arbitrary data.
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9.3 Bayesian Networks

Bayesian networks (BN, also known as probabilistic networks, belief networks)
are graphical models with a directed flow of information.1 BN is a modeling
technique for complex probabilistic systems. The big advantage of BN is that
the complexity of categorization is transferred from the actual reasoning to the
modeling. After the model has been established the calculations are always the
same.

Below, we discuss the structure of Bayesian networks and their application
for media understanding. BN is a general approach, categorization in media
understanding just one type of BN application. In the course of discussion,
we introduce the graph model, the matrix representation of BN as well as the
rules of calculation and the conditional dependence problem which is the central
element of complexity in BN theory.

f1 f2

f3

f4 f5

f6

f7

f8

Figure 9.4: Bayesian Network Example.

Figure 9.4 illustrates a typical Bayesian network. Nodes stand for events
(in our terminology, description elements in the form of predicates or decision
rules). Arrows stand for transitions. The flow of information (inference) goes
from top to bottom. Central to BN modeling are dependent nodes. The two
nodes f1, f2 influence the state of f3, i.e. P (f3|f1, f2) 6= 0. Such probabilities
are called conditional probability distributions (CPD) and usually expressed in
the form of Table 9.1. Depending on the context of usage, such matrices are
also called confusion matrices, because they express the probability that two
dependent events are confused with each other (similar to the odds in the BIM).

1An example for a probabilistic model with an undirected flow of information would be the
Markov random field model (see next section).
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It is worth noting that the size of the CPD matrices grows exponentially with the
number of dependencies, i.e. the complexity of the problem. Therefore, the most
important criterion of complexity in BN modeling is conditional independence
of nodes, and wise BN modeling will aim at avoiding dependencies wherever
possible – of course without oversimplifying the problem.

Bayesian networks theory knows two types of reasoning:

• Forward reasoning (predictive reasoning)

• Backward reasoning (diagnostic reasoning)

In the first case, the graph is traversed from top to bottom and the likelihood
of dependent nodes is computed. Typical applications are the computation of
the overall likelihood of a model (net) or the likelihood of a result given an
assembly of events. Backward reasoning tries to detect the cause for a (certain)
effect. It is typically used for reconstruction of the assembly of events that
caused a particular result. In media understanding, forward reasoning is the
more relevant application, as we will see below.

Now, we use the graph in Figure 9.4 to explain the rules of calculation used in
BN. All calculations are based on Bayes theorem, which reads for three connected
events f1, f2, f3 as follows:

P (f3|f1, f2) =
P (f1, f2, f3)
P (f1, f2)

=
P (f1, f2|f3).P (f3)

P (f1, f2)
(9.8)

The joint probability of the subgraph f1, f2, f3 can be computed by simply
applying the chain rule.

P (f1, f2, f3) = P (f3|f1, f2).P (f1).P (f2) (9.9)

Computing the joint probability is a typical case of forward reasoning. If
only partial data is available for reasoning, variables have to be introduced for
the missing events. For example, if we want to know whether f3 was caused
by f1 but we have no information about f2 we have to iterate over all possible
values of this event:

P (f3|f1) =
∑
y

P (f3|f1, y).P (f1).P (y) (9.10)

If no input is given, the probability of f3 can be computed by adding another
variable:

P (f3) =
∑
x

∑
y

P (f3|x, y).P (x).P (y) (9.11)
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Backward reasoning can be performed in the same manner by applying Bayes
rule. Nodes like f6 can be treated like f1. Nodes like f4, f5 require the application
of the chain rule, i.e. their integration in the CPD of f1. Eventually, nodes like
f7, f8 are only dependent of their predecessors and have to be modeled by the
chain rule.

In conclusion, reasoning in Bayesian networks requires only two tools:

1. Application of the chain rule for dependent nodes. Implicitly, this includes
the application of Bayes theorem.

2. Representation of missing data by variables and summarization over all
possible manifestations of missing events.

As we stated above, the rules of computation in BN are always the same.
The problem is modeling an appropriate network. That is, the definition of
events and dependencies and the sampling of the CPD. For the latter task, the
density estimators discussed above can be used. Since the top layers (so-called
hierarchical priors) have a high influence on the BN reasoning, they have to
be sampled with great care. The high dependency on the hierarchical priors is
one of the largest weaknesses of BN. Eventually, the modeling has to be done as
required by the problem domain. Below, we will discuss the typical requirements
of media understanding.

f1 f2

f3

Figure 9.5: Conditional Dependence.

Generally, the central elements of BN are conditional dependent nodes. Fig-
ure 9.5 shows two nodes f1, f2 that are conditional dependent. Conditional
dependence means that both events f1, f2 can be used to explain the result f3.
However, as soon as we know that one of them is the actual cause of f3 the
other one becomes less likely. This phenomenon is called the explaining away
paradoxon. The explanation is actually very simple. The chain rule sets the
following equivalences between conditional probabilities:

P (f3) = P (f3|f1).P (f1) + P (f3|f2).P (f2)

That is, event f3 can be explained by f1 or by f2. As long as we do not know
the actual cause of the outcome, the conditional probabilities will be smaller
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than one. As soon as the cause is known, one becomes maximal and, therefore,
reduces the other conditional probability. For example, if we come to know that
f2 caused f3 (P (f3|f2) = 1) the above formula becomes:

P (f3|f1).P (f1) + 1.P (f2) = const.

Since the a priories remain constant, P (f3|f1) must necessarily be explained
away a bit.

f11 f12 f13

f21 f22 f23

f31 f32 f33

c

m(x, y) < ε1 m(x, y) < ε2 m(x, y) < ε3

Figure 9.6: Bayesian Networks for Media Understanding.

The Bayesian network model is nice, but how can it be employed for cate-
gorization in media understanding? Figure 9.6 illustrates the concept. First of
all, we regard description elements and class labels as events, the first located
on the top of the network, the latter on the bottom. Predicates fit naturally
with the event concept of BN. However, if quantities are given, we require a
pre-processing step in which the quantities are transformed to proto-predicates.
In the figure, we suggest a distance-based approach, i.e. measurement from de-
scription element x to a reference y. In practice, often rule-based approaches are
employed. Of course, coarse representation would be another option, etc. As
soon as the proto-predicates have been computed the second round of catego-
rization can be performed. In the simplest case, the class label can be computed
directly from all inputs. Since this model would create many dependencies, it
may make more sense to add hidden layers that combine related description ele-
ments before reasoning on the class. For example, if audio and color features are
given, they may be processed separately first before the categorization in videos
of, say, sports events or newscasts is performed.

This approach may give the impression that the design of an appropriate
BN for media understanding depends heavily on the experimenter. However, in
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practice a different approach is usually taken. The experimenter only provides
a ground truth and in the training step some meta-algorithm computes the best
BN for its representation by trial and error.

In conclusion, the Bayesian networks model is a formalism that fits all proba-
bilistic categorization problems. After the modeling of the problem, the catego-
rization process (forward reasoning by the chain rule using variables) is always
the same. Against its elegance and simplicity stands the low efficiency of BN.
The preparation of the model and the inference process require more resources
and time than most other categorization approaches. The effect of BN is positive
in terms of reducing the semantic gap (application of Bayes rule) and dealing
with noisy data (conditional dependence improves the chance for correct reason-
ing) but bad in terms of dependency on a large well-balanced ground truth.

In the last section of this chapter, we introduce Markov processes which are
today successfully employed for categorization in media understanding and other
domains.

9.4 Markov Processes

Markov processes are particular types of Bayesian networks. They are also
modeled as graphs and the elements are the same: Nodes stand for events and
arrows for probabilistic transitions between events, i.e. conditional dependence.
The usage, again, is the same: Estimation of the probability of occurrence of an
observed sequence of events. The big difference between Bayesian networks and
Markov processes, however, is that the latter have a fixed, pre-defined structure.
Therefore, the problem of designing the network falls away in categorization
by Markov processes. Markov processes with distinct structures are known by
different names: hidden Markov models are one prominent example. By stating
that one Markov process has a particular structure, we do not mean the number
of nodes would be fixed (it is not) but that the interpretation of particular nodes
is always the same and the relationship of differently interpreted nodes is always
the same. The examples given below will illuminate this point.

In the remainder of this section, we discuss three types of Markov processes:
Markov chains, hidden Markov models and Markov random fields. The latter
type is not a ’typical’ Bayesian network and only of limited interest in prob-
abilistic categorization, but they are sometimes employed in image processing
and then, very effectively. Therefore, we consider it beneficial to explain this
approach briefly here.

Figure 9.7 gives an example of a Markov process of first order. Such a Markov
process is called a Markov chain. The nodes represent the events. Every event
depends only on the first predecessor (not on pairs, etc. of predecessors), i.e.
order n = 1. Please note that transitions from one node to itself (that is, one
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f1 f2 f3 f4 f5

Figure 9.7: Markov Process Example.

event causes the same event) are omitted in the figure. This was done for the
sake of simplicity. A full Markov chain will also allow a flow from one node to
itself.

Due to the chain-like structure of Markov processes, they are often employed
in a temporal context. Then, the transitions between events imply progression
in time. Therefore, the picture given in Figure 9.7 provides only a static view
of the problem but does not tell anything about the temporal structure of the
problem. It is important to keep this distinction in mind in order not to get
confused by the different ways of illustrating/modeling Markov processes.

Simple Markov processes such as Markov chains are only of little signifi-
cance in media understanding. They are usually not employed for categoriza-
tion because the one-layer structure does not offer a sufficient number of degrees
of freedom for modeling all aspects of the media understanding categorization
problem.

s1 s2 s3 s4

f1 f2 f3

Figure 9.8: Hidden Markov Model Structure.

Instead, an extended form of Markov process known as hidden Markov model
(HMM) is employed. The HMM is based on the assumption that the actual
Markov process is not directly observable. That is, we cannot say – in the
temporal context – which is the current state and which will be the next. Rather,
the HMM introduces additional observations: states, that are probabilistically
linked to the states of the process and observable.
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Figure 9.8 shows the static structure of a HMM with three hidden states fi
and four observations si. A typical toy example used in lectures to explain HMM
is estimating the weather behind a mountain (hidden states) from the weather
at the observer’s location (observations). Why are HMM are so powerful in me-
dia understanding? The answer is straightforward. Media understanding aims
at understanding content from descriptions. Between the two phenomena lies
the semantic gap. If we consider the media content hidden but the descrip-
tions observable we arrive at the situation for which HMM were designed. It is,
therefore, only natural to employ them for media understanding categorization.

In order to build a HMM we need the following information:

• Hidden states and observations. Below, we use F for the set of hidden
states fi and S for the set of observations si.

• Inference matrices between observations and hidden states and between
hidden states. The first is clear. The second type of inference should not
be forgotten, though. HMM model a hidden Markov process of first order.
Therefore, we have probabilistic transitions between hidden states.

• A vector Π of probabilities πi for the likelihood that the initial state is fi.
Since we cannot observe the Markov process, we need at least a guess for
its a priori state.

One actual challenge of using HMM is providing the confusion matrices of ob-
servations and hidden states. The number of observation states may be smaller,
equal or larger than the number of hidden states. Of course, the quality of in-
ference depends on the number of observations (generally, the more the better).

f11 f12 f13

f21 f22 f23

f31 f32 f33

t

Figure 9.9: Reasoning in Hidden Markov Models.

When the required data has been sampled or otherwise provided the ac-
tual inference follows the process illustrated in Figure 9.9. It is common to
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assume a temporal context in the reasoning process. That is, the probability of
a state fit+1 depends on all its predecessors fit and their transition probabili-
ties. Furthermore, the observations – not illustrated in the figure – are taken
into account. For the media understanding application, the temporal context
can be understood in the following way. The HMM starts with an initial guess of
the categorization given by Π. This guess is refined over time by transforming a
priories into a posteriories by adding one description element (or a group of ele-
ments) per time step. Eventually, we can derive the best possible categorization
from the probabilities computed in the HMM.

Taxonomically viewed, hidden Markov models can be used to solve three
problems:

1. Evaluation: Identify the best HMM for given observations. In evaluation,
one HMM stands for one class. The entire categorization problem is mod-
eled by a set of HMM. A typical application is speech recognition where
one HMM stands for one word, and the observations are, for example,
given as temporal audio descriptions (zero crossings, etc.). The evaluation
problem is typically solved by the forward algorithm.

2. Decoding : Identify the most likely sequence of hidden states for a given
sequence of observations. Here, one HMM covers the entire categorization
problem, and the selection is performed by the maximum likelihood prin-
ciple. A typical example is computational linguistics where the words of
a phrase (observations) are labeled as nouns, verbs, etc. (hidden states).
The decoding problem is typically solved by the Viterbi algorithm.

3. Learning : Compute the HMM contents (confusion matrices, initial states)
from given observations and hidden states. This problem is typically solved
by applying evaluation and decoding alternatingly in an expectation max-
imization process until the match between observations and predicates is
sufficiently good.

For many media understanding applications, the forward algorithm is of
greatest importance. It computes the overall probability of a HMM by the
following two equations:

αj1 = πj .P (fj |s1) (9.12)

αjt+1 =
n∑
i=1

αitP (fj |fi)P (fj |st+1) (9.13)

The αit are bound variable that accumulate the a posteriori probabilities, n is
the number of hidden states. The two types of confusion matrices are expressed
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in the conditional probabilities. The start probabilities αi1 depend only on the
initial guesses and the inference from observations to hidden states. From the
second iteration on (t+ 1) the prior probabilities are summed up and weighted
by the transition probabilities of the hidden states and, again, by the inference
from observations to hidden states. Eventually, the overall probability of the

HMM is P (F, S) =
n∑
i=1

αiT , where T = size(S).

The forward algorithm is a straightforward optimization of this process. In-
stead of implementing two loops it accumulates the a posteriori probabilities
in a recursive procedure which transfers parts of the complexity from the al-
gorithm to the data (on the stack) and reduces the order from O(n) = n2 to
O(n) = n.log(n) – a strategy well known to every graduate computer engineering
student.

The Viterbi algorithm implements the same idea and uses equations that are
very similar to the forward algorithm. The only difference is that in decoding
we are interested in the maximum likelihood instead of the overall likelihood.
Therefore, the Viterbi algorithm replaces the sum by the maximum operator:

βj1 = πj .P (fj |s1) (9.14)

βjt+1 = max
i

(
βitP (fj |fi)P (fj |st+1)

)
(9.15)

Eventually, the class label of the hidden state with the maximum likelihood
is attached to the media object under investigation.

fx

Figure 9.10: Hierarchical Hidden Markov Models.

Hidden Markov models are very effective probabilistic classifiers. However,
if their structure is insufficient to cover complex categorization problems, they
are sometimes replaced by hierarchical HMM. Figure 9.10 illustrates the struc-
ture. Simply, every hidden state may be replaced by a HMM, and so on. Since
this recursion may go to an arbitrary depth hierarchical HMM are theoretically
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very powerful. In practice however, hierarchical HMM are very hard to train.
One rule of the thumb is that for training of an expressive HMM at least ten
ground truth samples per hidden state are required. With hierarchical HMM, an
exponentially bigger ground truth would be required. Since furthermore, ev-
ery hierarchical HMM can be reduced to a HMM, hierarchical HMM are not to
widely used in media understanding.

Markov random fields (MRF) are related to Bayesian networks. The only
difference is that in an MRF, the transitions are not directional, i.e. information
may flow from any node to any other connected node and back. Since the
edges of the MRF graph have no direction, Bayesian inference is impossible.
Therefore, MRF are unsuitable for categorization. Instead, MRF are employed
in media understanding, for example, for image segmentation where each node
represents a (group of) samples and the probabilities model the likelihood of
edges between samples. The essential problem of MRF usage is computing the
transition probabilities. Solving it requires an iterative process of annealing. The
Hopfield network (Chapter 26) may be seen as one example of such a process.

Where are Markov processes employed in media understanding? As already
mentioned, hidden Markov models are of highest significance for categoriza-
tion in media understanding. HMM are the state-of-the-art solution for speech
recognition and, for example, employed in bioinformation processing for mo-
tif identification. In speech recognition, the forward algorithm is used to solve
the evaluation problem. That is, the problem of categorization is shifted from
probabilistic inference to quickly identifying those HMM that are most likely to
represent a certain speech description. This problem can be solved by wrapping
another media understanding process around it, applying a feature transforma-
tion on the HMM data and categorizing the resulting descriptions. Practically,
the HMM data are often abstracted to a simple data vector, and categorization
is performed using the vector space model. This approach is straightforward
and something more sophisticated would be imaginable. Why not applying a
decoding HMM?

In bioinformation, motifs are short sequences of base pairs (5-20) that appear
several times in transcription factors bounding sites (TFBS) which are respon-
sible for the transformation of DNA into proteins. One of the most important
problems of bioinformation understanding is the identification of motifs. One
typical solution is training hidden Markov models by Gibbs sampling or expec-
tation maximization for the identification of such sequences.

In conclusion, Markov processes are specialized Bayesian networks with pre-
defined structure that can be applied very effectively. Their application is state-
of-the-art in several areas of media understanding because they reduce the se-
mantic gap problem by Bayesian inference, have a very good performance and
are less prone to noise than many deterministic categorization methods. On
the other hand, the training process requires a well-balanced ground truth of
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considerable size. Furthermore, the application of an iterative sampling model
is very time-consuming.

The combination of sophisticated training and fast application makes Markov
processes – as well as the other probabilistic categorization methods – tailor-
made for mobile application where the training is performed on the desktop
while the usage is performed mobile. In the next chapter, we will go deeper into
the practical side of media understanding and discuss topics such as application
design, implementation and evaluation.



Chapter 10

Application Building

Introduces the media understanding application design process, requirements of
matching, retrieval and browsing, aspects of different programming environments,
methods and measures for evaluation as well as query acceleration approaches.

10.1 Application Design

This chapter illuminates the practical side of media understanding. It is of
paramount importance to know the algorithms of feature transformation, infor-
mation filtering and categorization that are used in media understanding, but
it is also relevant to know a handful of best practices for the implementation of
media understanding applications. Below, we introduce major concepts of ap-
plication design and implementation as well as for testing and refinement. The
four sections follow the classic waterfall model of software engineering: design,
implementation, evaluation and optimization – though the media understanding
software engineering process is not that old-fashioned. The practical implemen-
tation will follow a test-driven approach where task sand evaluation criteria are
defined first, and the proper algorithms are chosen based on the given require-
ments. Media understanding software design is an iterative process. The first
prototype is refined based on evaluation results until the initial requirements are
met as good as possible.

We firmly believe that media understanding application design cannot be
left to practitioners while the researchers focus on algorithms for description
and categorization. It is, in the contrary, an integral part of the research pro-
cess. Media understanding is a practical discipline where the development of
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theoretical models, implementation and parameter tuning go hand in hand in
solving a problem. The media understanding researcher is therefore encouraged
to approach this research area from the practical side. Only the persevering
endeavor to solve a particular media understanding problem can trigger the
learning process that makes one understand what the real difficulties of media
understanding lie.

The remainder of this section is organized as follows. First, we introduce
the major types of applications of media understanding. Then, we sketch the
typical requirements of such applications, outline the design process for desktop
applications and discuss a few design patterns – including the media understand-
ing of media understanding scheme. Eventually, we emphasize the particulars
of mobile media understanding since the relevance of this area of engineering is
increasing today.

Retrieval Browsing
Matching

Figure 10.1: Matching, Retrieval and Browsing.

Figure 10.1 uses a feature space to illustrate the three major types of ap-
plications of media understanding. Matching as the simplest form of media
understanding, tries to identify the same content in a database as given in a
reference. In the figure, the dotted x is the reference and the double-arrowed
line indicates the match. Retrieval aims at identifying the n media objects that
are most similar to the given reference, in the figure illustrated by the dotted
circle. Please note that the reference may be given as a media object, a group
of media objects or a description. The diameter of the circle depends on the
location of the reference as well as on the density of feature space. The third
type of application, browsing aims at separating clusters (classes) of semanti-
cally related media objects and, optionally, at quantizing the level of similarity
between clusters. The dashed lines indicate the clusters in the figure.

Each practical application can be categorized as either matching, retrieval
or browsing. Face recognition is, for example, a typical matching application.
Content-based image search is typically implemented as a retrieval application
(see Figure 10.5 for an example). Music genre classification is an example for
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browsing. Here, semantically similar content is clustered in genres such as classic
music, pop, jazz, etc. If necessary, related clusters such as rock music and heavy
metal can be organized hierarchically by similarity.

The type of application determines the design requirements. Matching ap-
plications have to provide one – excellent – hit for a query. Therefore, the
description of media objects has to be extensive – in order to cover all possible
aspects – and the matching has to be very discriminative. Browsing is the mere
opposite of matching. Descriptions may be short and feature transformation may
focus on major aspects of the content. Brief descriptions do not allow highly
discriminative categorization. Instead, this step will aim at a concise ordering of
all media objects. Retrieval, eventually, is located somewhere between matching
and browsing. Since more than one object has to be identified, the categoriza-
tion cannot be as restrictive as in matching. In consequence, the descriptions
need not be as long as in the matching case. On the other hand, retrieval can
be seen as a very specific browsing task, i.e. the division of the feature space
in media objects relevant or irrelevant to a particular query. Therefore, the
categorization step has to be more discriminative than in the browsing case, and
more feature information is required for a solid decision-making process. Table
10.1 summarizes these findings.

Application Type Feature Transformation Description Categorization
Browsing General Short Relaxed
Matching Extensive Long Discriminative
Retrieval Moderate Medium Moderate

Table 10.1: Requirements of Application Types.

Given the signals of the training set and the requirements of the application,
the media understanding design process may flow as described in Figure 10.2.
The first step is the analysis of the signal – as introduced in Chapter 2. The par-
ticular properties of the sample data (domain, bandwidth, etc.) in combination
with the requirements determine the feature transformations that are selected.
These feature transformations are then employed for the computation of de-
scriptions, which are enhanced by information filtering methods. Refinement
may already appear after this step (e.g. selection of different feature transfor-
mations), but usually potentially suitable categorization methods are selected
and trained first. Methodological refinement is based on the evaluation results.
The process of method selection for feature transformation, filtering and catego-
rization is repeated and refined until the quality criteria are met. The eventual
algorithm needs to be optimized in order to make it as fast as possible. Prac-
tically, this will not be done by the implementer of the media understanding
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Figure 10.2: Media Understanding Application Design Process.

application. Rather, the applications will be designed in a flexible tool for me-
dia understanding while the eventual implementation will be performed using a
low-level API and optimized libraries. In the next section, we will give examples
for such programming environments.

The design process is straightforward engineering. It is requirements-driven
in the sense that quality and needs have to be specified prior to method selection.
Please refer to Chapter 25 for concrete examples of its usage. This chapter will
introduce semantic features such as face recognition that necessarily imply an
iterative media understanding process that adds categorization to the feature
design loop.

The two major high-level software design patterns of media understanding
are:

• A processing chain that implements the big picture of media understand-
ing.

• An iterative refinement process based on relevance feedback that imple-
ments media understanding of media understanding.

The first point should be clear by now. Media understanding – whatever the
media type is – is a process of summarization and categorization. The employed
methods are signal processing (feature transformations), applied statistics (in-
formation filtering) and machine learning (categorization). The processing chain
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will be a sequence of these methods – which, depends on the application domain,
the application type and the state-of-the-art.

The second pattern has already been touched a couple of times in this book.
Semantic understanding of media content can hardly be achieved with the low-
level feature transformations of today (semantic gap). The major remedy against
the semantic gap is applying an iterative process that puts the user and her
semantic understanding (so-called relevance feedback) in the loop of refinement.
Relevance feedback may be that some image is not relevant to some retrieval
query or that some document is relevant to a query.

Descriptions

Training

Model

Categorization

Classes

Evaluation Relevance
Feedback

Iterative
Refinement

Training
Data

Figure 10.3: Iterative Refinement by Relevance Feedback.

Figure 10.3 illustrates the general iterative refinement process. The classes
computed by some categorization process are evaluated based on relevance feed-
back. Then, some iterative refinement is applied to the training data, and the
categorization process is performed again by firstly, training the model and sec-
ondly, applying it on the data. The iterative refinement step is responsible for
computing the control information in this cybernetic process. Depending on
the type of relevance feedback (human or ground truth-based) and the applica-
tion domain iterative refinement may be performed in various ways. Two major
forms are the following.
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• Ground truth manipulation: In this case, a feedback of the form ’this item
is relevant, this not’ is employed to include/exclude some media objects
from the ground truth with the effect that refined categorization models are
trained. For example, if in a music retrieval application, all jazz samples
are marked as relevant while all pop samples are marked as irrelevant only
the first type will be included – as positive examples – in the training data
of the classifier.

• Re-weighting : Here, the general idea is to manipulate the descriptions
or probability distributions used for categorization by new – iteratively
extracted – information on the problem domain. For example, the weight
for the i-th description predicate (!) can be updated using the following
formula:

wi = log
ri
R

ni−ri
N−R

Here, ri is the number of relevant objects in the media database that have
the i-th predicate on (for example, the i-th description element/term ex-
ists) while ni is the overall number of media objects in the database where
this term is on. Values R,N stand for the total numbers of (relevant)
media objects in the database. This method is very popular in text under-
standing and a number of variations to the presented re-weighting scheme
do exist.

Relevance feedback is of highest significance for successful media understand-
ing. On the one hand, it has the potential to improve the results – and user
satisfaction – dramatically while on the other hand the elimination of irrelevant
components of the process may have a very positive effect on the performance of
media understanding algorithms. Media understanding of media understanding
may be seen as an elevator that increases the semantic level of operation with
each iteration.

We would like to close the design section with a few remarks on the particulars
of mobile media understanding. Such applications, for example, executed on
a smartphone, have a high potential. Mobile speech recognition will soon be
available at a quality that comes close to the Babelfish [2]. Visual applications
will be usable for tracking and logging the environment. Many more interesting
applications do exist. It is therefore just to discuss this specific scenario of media
understanding here.

Generally, the design process is the same as for desktop applications. Figure
10.4 sketches this process (dotted elements). Only two components have to be
added to the design process. The first is a resource analysis. In this step, the
resources consumed by the processing chain have to be analyzed, and it has
to be tested whether or not these resources are available in the mobile setup.
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Figure 10.4: Design of Mobile Media Understanding Applications.

Practically, it can be very annoying to find out that the media understanding
solution with acceptable quality is simply not doable in the mobile setup. In
order to avoid such frustration it is important to perform the resource analysis
before the implementation of the algorithm.

The second issue of mobile media understanding design is session design.
That is, deciding which components of the applications have to run on the –
limited – mobile device and which components can be outsourced to a remote
machine with better processing capabilities. Generally, three strategies do exist:

1. Perform the entire application locally.

2. Perform only media capturing locally and everything else remotely.

3. Perform media capturing and categorization locally, but feature transfor-
mation, filtering and classifier training remotely.

In the first scenario, only very basic methods can be applied. The usage of
the simple visual features described above limits the performance of a media
understanding application on a state-of-the-art mobile device to less than one
frame per second today. That is, of the 25 or more captured frames only one is
available for feature transformation. Furthermore, only very simple categoriza-
tion methods can be employed locally.



188 CHAPTER 10. APPLICATION BUILDING

The second strategy is the most-employed today. For example, some Android
media understanding applications follow the strategy to record only the reference
media object locally and do everything else remotely. The advantage of this
strategy is significantly higher processing power. The only disadvantage is the
latency caused by media transfer over the network.

The third strategy may also not be neglected. Signal processing is certainly
the most resource-consuming part of media understanding. It is, therefore, rea-
sonable to source this part out while performing all other steps on the mobile
device. In particular, if a well-trained Markov process is employed for catego-
rization, such an application can produce satisfactory results at relatively low
computation and networking costs.

In conclusion, designing a media understanding application means defining
requirements, selecting appropriate feature transformations, filtering methods
and classifiers, and implementing an iterative process for the optimization of
each individual component and of the entire process. In the next section, we
will discuss how this process is performed in practice.

10.2 Implementation

This section summarizes implementation aspects of media understanding. The
implementation of such applications cannot be performed from scratch for every
new problem. Instead, libraries for specific feature transformations and cate-
gorization algorithms do exist that can be reused and recombined. Below, we
introduce the major sources of such libraries. Furthermore, we briefly discuss the
problem of user interface design in media understanding as well as the practical
provision of ground truth data and of probability distributions by sampling.

The fundamental problem of media understanding application programming
is: When to use which feature transformation, information filter and classifier?
The selection can be based on the design process outlined in the last section.
More and more, however, a different scheme is employed in practice that consists
of the following steps:

1. Apply all feature transformations on the media database that are avail-
able. In this step, the only limitation is the type of sample employed
(quantitative or symbolic).

2. Apply information filtering methods on the descriptions in order to elimi-
nate all elements that are redundant.

3. On the factors and some ground truth train all known categorization
method and select the one for the application that shows the best per-
formance.
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The result is a media understanding application that employs all feature
transformations that contribute significantly to the factors and the categoriza-
tion method with optimal adaptation to the ground truth. Of course, this scheme
relies strongly on a well-balanced, large ground truth. Otherwise, the result
would be extreme overfitting to the training data. On the other hand, it is a
domain-independent recipe that guarantees good results by simply taking into
account everything that may help the cause. This quantitative scheme is the
practical alternative to the human-centered design process suggested in the last
section.

A number of tools and libraries do exist for the implementation of media
understanding applications. In Appendix C we compare the following four major
environments:

• Matlab [69]: A commercial software for sophisticated signal processing and
machine learning (among others). Matlab provides toolboxes that contain
all major feature transformations for the audiovisual domain, biosignal
domain, etc. One of the major advantages of Matlab is its popularity
in the scientific world. Hence, many toolboxes that were developed by
scientific institutions are available free of charge and, often, provide the
latest functionality.

• OpenCV [360]: This C-library (originally developed by Intel) provides
functions for feature extraction from visual media. Furthermore, it offers
the major categorization methods. Most algorithms are implemented very
effectively, which makes the library tailor-made for the implementation of
sophisticated visual media understanding applications.

• R [368]: R is a command line-oriented statistics toolbox that provides
a variety of information filtering methods as well as classifiers. It also
contains a programming language that allows for the implementation of
new filtering methods. Similar to Matlab, R is widely used in the scientific
world and, therefore, the latest algorithms are available for this system.

• Weka [378]: A Java-based application for the usage and comparison of cat-
egorization methods. Weka implements the vast majority of relevant cate-
gorization methods. Feature spaces with ground truth can be employed to
train these categorization methods and compare their performance. Fur-
thermore, Weka provides very useful information visualization methods.

In the appendix, we compare these four packages by their major features. It
is highly recommended to employ R for any form of statistical evaluation and
to use Weka for the identification of the best-performing categorization method.
OpenCV is an excellent choice for feature design in the visual domain. Matlab
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provides all kinds of functionalities and is, for example, state-of-the-art in the
biosignal domain and the audio domain.1 Major weakness of all packages is
missing functionality for the processing of symbolic media data. In this case,
we recommend the usage of a scripting language with powerful capabilities for
regular expression parsing. The programming language Perl is unbeaten in this
domain.

b)

a)

c)

d)

Figure 10.5: A Typical Retrieval User Interface.

Of the four packages listed above, only Matlab provides all functionalities
required for application implementation, including a user interface design kit.
User interfaces in media understanding require a few specific components – see
Figure 10.5 for an example of a texture retrieval application:

• A component for the media representation (a). Visual media can be rep-
resented by their content (e.g. keyframes), text can be rendered symboli-
cally, all other signals need to be represented by appropriate visualizations.
Normally, the representation of audio by a graph of the waveform will not
make sense while the representation by the name of the piece of audio
will. The selection of a good media representation is often crucial for the
understandability of the user interface.

1Links to more libraries, in particular, C- and Java-libraries for feature transformation can
be found on the web page atpress.info/mmir.
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• A query definition component (b) that allows the user to communicate
his intention to the machine. Typical is the provision of one or more
examples of the type of media of interest. In the figure, the query definition
component is just a list widget that allows for the selection of one image.

• A component for the result set (c). A matching application requires just
one widget for the match. For a retrieval system, a static grid of objects is
sufficient. For browsing applications the result set needs to be dynamically
adjustable since the sizes of clusters will vary.

• Eventually, a component for query refinement (d). In the figure, relevance
feedback can be given on every image in the result set. Furthermore,
the weights of the feature transformations employed can be adjusted by a
slider. The selection of widgets for query refinement depends generally on
the type of iterative refinement employed and the level of expertise of the
users.

We would like to emphasize the importance of user-centered user interface
design in media understanding. In the past, most of these applications were
targeted at researchers and expert users. If media understanding should become
an every-day tool for average users – like text-based search today – the user
interfaces have to be easy to understand and straightforward to use. In the
future, more effort should be laid on the user interface design aspects of media
understanding.

One major source of data has to be provided for application building in
media understanding: an as good as possible ground truth. Ground truth is
appropriate to the problem domain if it contains examples for all likely cases
and if the number of examples for of each type of description is related to the
number of times such an event may occur in reality. It goes without saying that
the construction of such a ground truth is a sophisticated, tedious undertaking.
Moreover, it is an undertaking that – though of paramount importance – has lit-
tle chance of earning the person that performs it scientific merit. It is, therefore,
not surprising that only few ground truth libraries do exist that come near to the
stated requirements. The better libraries are mostly not free of charge. The web
page of this book lists a number of libraries that represent the state-of-the-art
in their respective content domains.

Whenever a probabilistic method should be employed for categorization, the
ground truth has to be transformed to distributions of conditional probabilities.
In the last chapter, we described the major sampling methods – Gibbs sampling
and expectation maximization – as well as the common approach to assume de-
scription elements independent of each other and hence, making the most of the
available ground truth. Figure 10.6 illustrates two further heuristic approaches
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Figure 10.6: Improvement of Training Data for Sampling.

to overcome this problem. The center column of the figure stands for the ap-
proach described above. The left column is an approach for the construction
of representative references as additional sampling sources. In order to do that,
the available training samples are element-wise represented coarsely (quantiza-
tion). Then, similar (for example, in terms of distance smaller than a threshold)
candidates are aggregated using some statistical method (mean, weighted mean,
median – all per description element). The result is a set of references that can
be employed for density estimation.

The right column suggests another approach for practical sampling. In the
first step, statistical analysis is performed in order to generate histograms of the
descriptions in the ground truth data. These histograms are then smoothed and,
thereby, transformed into density functions that can be employed as sources for
sampling. This method and the two others depicted in the figure can provide
valuable input to the sampling process.

In conclusion, the practical implementation of media understanding appli-
cations requires choosing an appropriate, powerful development kit. Appendix
C compares the features of the major alternatives. Most media understanding
applications are assembled from library functions. In order to implement the
evolutionary prototyping approach outlined above, their performance needs to
be evaluated – for example, by the methods discussed in the next section.
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10.3 Evaluation

The first two sections of this chapter should have made clear that evaluation
is the essential step in media understanding application building. The state-of-
the-art evaluation process starts with the definition of quality criteria for the
problem domain. For example, in a general-purpose face recognition applica-
tion, the minimum quality level could be set at 95%, i.e. the application has to
be optimized until at most 5% of all faces are associated with wrong identities.
Formally, a quality criterion consists of a measure and a threshold. Below, we
introduce the most important measures for ground truth-based evaluation. The
thresholds depend on the application domain: 95% in face recognition is am-
bitious, but possible. Recognizing 99% number plates in a traffic surveillance
application correctly may be doable while recognizing 60% violence scenes in fea-
ture films is hardly possible with state-of-the-art media understanding methods.
Practical experience creates an understanding for what can be done.

In the second evaluation step, the prototype system will be tested against
a pre-defined test set (usually, a subset of the ground truth), the measures will
be computed for each run and, eventually, averaged over all test runs. If the
measured values lie below the pre-defined thresholds the iterative refinement
process is initialized in which methods and parameters are optimized until the
requirements are met or until it becomes clear that they cannot be met by
the available technology. This end is not too seldom reached in present media
understanding.

If the quality criteria are met, a third evaluation step is executed: perfor-
mance evaluation. In this step, the employed algorithms are optimized until
the performance cannot be increased anymore without a significant loss in cat-
egorization quality. We would like to emphasize that due to the complexity of
media understanding and due to the difficulties in reaching acceptable quality
levels this third step is only of minor interest today. In the future, however, when
computational media understanding will be comparable to human achievements
in this field, it will become highly important.

The following list summarizes the steps of media understanding evaluation.

1. Define quality criteria

(a) Select measures appropriate for the given test data

(b) Define minimal thresholds of quality

2. Compute evaluation data

(a) Take measurements for each run of the prototype system

(b) Aggregate the measurements statistically
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3. Repeat prototyping and the second step until the quality criteria are met

4. Optimize the algorithmic performance by employing heuristics, coarse rep-
resentation, etc.

In summary, best practice in media understanding evaluation is a results-
driven process, in which the algorithmic design follows clearly stated require-
ments. Below, we employ this scheme for ground truth-based evaluation. That
is, we assume that a set of descriptions with associated class labels is available
for evaluation. This situation may be considered optimal. Evaluation under less
luxury circumstances is discussed in Chapter 20.

The following measures are typically used for evaluation if a ground truth
is available. The measures assume a categorization situation with only two
classes: relevant/irrelevant (retrieval) but, since every division into n classes
can be reduced to a sequence of pair-wise comparisons, these measures are also
applicable in browsing scenarios.

r =
TP

TP + FN
Recall (10.1)

p =
TP

TP + FP
Precision (10.2)

f =
FP

TN + FP
Fallout (10.3)

Here, TP stands for the true positives, i.e. all media objects that were cor-
rectly categorized as relevant. The false positives FP were falsely categorized
as relevant (first-order error), the true negatives TN were correctly categorized
as irrelevant, while the false negatives FN were falsely categorized as irrelevant
(second-order error).

Recall (also known as true positives rate or sensitivity) and precision are the
two most important and practically used measures. The recall expresses how
many relevant objects were really recognized while the precision expresses how
relevant the returned set of media objects is. The fallout expresses the ability
of the prototype system to sort out irrelevant objects.

Recall and precision are interdependent measures, since they are computed
from the same components. One of the two measures alone cannot provide a full
picture of a media understanding system. An experienced experimenter will be
able to trade a better recall for worse precision (e.g. by very strict categorization)
and the other way around. Therefore, a serious researcher will always evaluate
her system by both measures.

In practice however, it is a non-trivial problem to provide a ground truth over
a large problem domain. In such a situation, it is tempting to rely solely on the
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precision values for evaluation, because the precision – in contrast to the recall –
can be computed from the result set alone. The values for true positives and false
positives can both be computed from the output of the classifier. Knowledge
about the distribution of relevant and irrelevant objects in the entire database
is not required.

It has, therefore, become common to describe media understanding systems
that operate on large, diverse bodies of media objects by the precision alone,
often by the so-called prec@16 value. This value expresses the precision mea-
sured in a result set of 16 elements. The origin of this measure lies in the image
retrieval domain, where 4x4 grids are common result sets.

Common or not, precision alone is an unsatisfactory measurement. Recall
and precision from a subset of the domain often express more about the capabil-
ities of a media understanding system than the precision over the entire domain.
Still, as we stressed above, recall can be traded for precision and vice versa.
What we really want is a measure that rewards strong recall and strong preci-
sion while punishing every deviation towards neglecting one value. The measure
that provides this behavior is the F1 score:

f1 = 2
TP2

2TP + FP + FN
= 2

r.p

r + p
(10.4)

The F1 score is optimal, if recall and precision are balanced. If one value
exceeds the other, the product grows slower than the sum, because any rectangle
has a ratio of area and perimeter smaller than the – optimal – square. Figure
10.7 illustrates the relationship of F1 score, recall and precision. If possible, the
F1 score should be employed for the evaluation of media understanding systems
since it packs all relevant information into one value.

1

1
Recall

Precision

F1 score

a
b

c

Figure 10.7: Performance Measures for Evaluation.

Figure 10.7 shows examples of recall-precision graphs. In such a graph, each
point on the curve stands for one measurement of recall and precision in the
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evaluation process. The entire curve expresses the performance of the prototype.
In the figure, the dotted lines a, b, c express fundamental types of recall and
precision relationships. Curve c is the desired behavior, rewarded by optimal F1

score. Curve b is still acceptable, while curve a describes a system with inferior
performance. In practice, the experimenter will endeavor to bulge line c as far
towards the r = p = 1 point as possible.

Practically, the levels of recall and precision depend on the application do-
main and the size of the media database. For limited problems such as face
recognition from a database with a few thousand nicely photographed pictures
values of r, p > 0.99 are possible today. For other domains, such as general
event recognition from a video corpus of one hundred hours or more, r, p ∼ 0.15
is already a fair result. From this status quo, we can conclude, that there is still
a lot to do in media understanding. However, if for some problem the quality
is considered acceptable, performance optimization – as discussed in the next
section – becomes relevant.

10.4 Optimization

Though overshadowed by the problem of quality optimization algorithmic opti-
mization must not be neglected in media understanding. Most categorization
methods introduced in the first part of this book employ micro processes that are
comparatively complex (for example, compared to relational database queries).
Even for small media databases, the answer time of a system employing such a
classifier can easily become intolerable. Therefore, the practical usability of a
media understanding application depends strongly on its performance.

Below, we briefly discuss two major areas of algorithmic optimization: heuris-
tic query acceleration (supported by query prediction) and query acceleration
by indexing. Generally, it has to be noted that query execution is in the focus
of optimization. Feature extraction from the media database can be performed
offline. The online query includes feature extraction from the query object (e.g.
a reference) and categorization of the descriptions of the media objects based
on the given reference. Hence, optimization of the feature transformations is of
minor importance compared to optimizing the categorization process.

Heuristic query acceleration aims at shortening the execution time of a query
by minimizing the number of times the micro process has to be applied. That is,
the number of pair-wise similarity measurements is reduced as far as possible.
The first step in this process is query prediction, i.e. estimating the time a query
will require. Query prediction is typically implemented as a media understanding
meta process. Experiences from past queries are analyzed using the instruments
of time series summarization (for example, a sliding average) and extrapolation
of the present query. The result is used to judge whether or not it makes sense
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to employ a sophisticated query acceleration scheme or not.

Reference point

Figure 10.8: Query Acceleration based on the Triangle Equality.

One typical heuristic query acceleration method for distance-based catego-
rization methods is to exclude media objects from the query process by usage of
the triangle inequality (see Section 8.3). This method can be applied if only the
first n objects should be returned (typically, retrieval). Figure 10.8 illustrates
the approach. Offline, the distance of all objects x in the feature space to some
reference point r (in the figure, dotted) is measured. During the query, the
distance m(x, y) of the query example y to any object in the database x needs
only to be computed, if m(x, r)+m(y, r) < m(xn, y) where xn is the description
of the media object at the n-th position in the result set. That is, if the pre-
computed distances or their sum is already beyond the last object in the result
set, the actual distance needs no longer be computed. Of course, this approach
is only feasible for metric distance measures, i.e. if the triangle inequality holds.
Its performance depends heavily on the chosen reference point. Generally, it is
beneficial to compute the centroid of the feature space and use it as r. However,
even under very good circumstances exploiting the triangle equality brings at
most about 5-10% performance gain.

Indexing is a different approach to query acceleration that can be employed
if the categorization micro process is based on pair-wise similarity measurement.
The idea is to structure feature space in a way that allows to identify the subarea
holding the likely answer to a query (in retrieval, a result set, in browsing, a
cluster, in matching, the match). Trees are the natural data structures for this
purpose. Starting from the root the subtree of relevance can be identified with
a few comparisons of the reference to non-leaf nodes. The big disadvantage
of this approach, however, is that normally, the reference object influences the
categorization process. That is, the morphology of the classes depends on the
given references. For example, the k-means algorithm (morphology determined
by references) can only very ineffectively be accelerated by indexing while the
k-nearest neighbor algorithm (reference defines only a local ad-hoc structure)
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can nicely be represented by a tree structure.

Root

a b c

a

b

c

Figure 10.9: An R-Tree Example.

Practically, the r-tree and its several sub-forms [9] have proven very effective
for the indexing of high-dimensional media descriptions. Figure 10.9 shows an
example where a two-dimensional feature space is organized in triplets by min-
imum distance. The balanced r-tree is a derivate of the binary tree that uses
similar algorithms for insert, delete and search. The major difference is that the
r-tree allows areas (subtrees) to overlap. That is, one description may be part
of more than one context. This fuzziness – similar to the one of decision trees –
fits naturally to the requirements of media understanding.

However, the applicability of indexing in media understanding is very lim-
ited since the most powerful categorization methods – like Bayesian inference –
employ disjunct concepts. Other starting points for general-purpose optimiza-
tion include coarse representation of descriptions, compacting them by factor
analysis, using the description elements with the highest influence on the fac-
tors instead of actually performing the factor analysis, and grid computation,
i.e. performing the categorization micro process only for selected objects (refer-
ences) and assuming all their neighbors having similar class labels. See [102] for
more information on optimization.
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Chapter 11

First Reflection and Bigger
Picture

Summarizes the results of the first part, discusses the building blocks of feature
transformations in detail, extends the big picture of media understanding and
provides an overview over the second part of the book.

11.1 Conclusions from Fundamental Methods

In the first part of this book, we introduced a multitude of methods for feature
extraction, information filtering and categorization. Before we continue with
more advanced concepts of media understanding we consider it beneficial to
review these findings, emphasize important points, identify communalities and
equivalences and derive conclusions as a basis for the coming chapters. This
chapter serves this purpose. In the first section, we emphasize the most impor-
tant concepts of the first part. The second and third section are dedicated to the
reflection of the methods introduced above. Section 11.2 analyzes and structures
the feature transformation process. Chapter 21 will continue this analysis for
the categorization process. Section 11.3 takes the results of the summarization
process and refines the big picture. Eventually, the fourth section provides an
overview over the methods discussed in the second part of this book. In sum-
mary, the present chapter summarizes fundamental media understanding and
leads the way to advanced media understanding.

The remainder of this section is organized along the big picture. First, we list
our major findings concerning the media objects, then for feature transformation,
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information filtering and eventually, for the categorization of descriptions. The
following list summarizes the paramount aspects of the digital media objects
that form the basis of media understanding.

1. The overall goal is understanding multimedia content in the same way as
humans understand sensual stimuli today. No doubt, media understanding
science is still far from this goal. What is being done is primarily single-
media understanding – if possible with an additional merging step in which
the single-media results are joined. It is one purpose of this publication
to establish links between the research disciplines focusing on individual
media types. We have already seen above – and will see much more in this
and the consecutive chapters – that the methods employed on data types
as different as video and text are not that different. We cannot see why
in the future fully integrated multimedia understanding systems should
become implementable.

2. The big picture of media understanding defines the superior path through
the media analysis and classification process. The big picture consists
of a feature transformation step that summarizes large, redundant media
chunks into well-defined media descriptions of fixed length. The descrip-
tions are fed into a categorization process trained by a set of examples.
The results of categorization are class labels that associate media objects
with semantic categories. That is, the big picture suggests a summariza-
tion and specialization process that assesses general media content from a
particular perspective (context).

3. The media properties determine the employed methods. Different types of
media have different properties. For example, visual media are charac-
terized by edges, i.e. sudden significant changes of pixel intensity. The
human visual system focusses on such changes. Music, on the contrary,
is characterized by the smooth composition of wave components. Human
perception distinguishes pieces of music, among other properties, by their
typical overtone structures. In consequence, audio and video media under-
standing require different methods and parameters. These differences are,
however, not principally but often only the difference between using a sum
operator on one type of media while employing the maximum operator on
another. Later in this section we will discuss this topic in greater detail.
In consequence, the media understanding researcher has to be aware of the
specific properties of the individual media types.

4. In particular, the media types under consideration here (audio, bioinfor-
mation, biosignals, image, stocks, text and video) can be distinguished by
their fundamental types of samples. Each digital media object is a compos-
ite of samples. Samples may be quantitative (measurements, e.g. audio,
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image, video) or symbolic (elements of some set, e.g. bioinformation, text).
Though there is a family resemblance between the two types and even hy-
brids do exist (for example, stock data), not all quantitative methods can
be applied unadjusted on symbolic data and vice versa. It is important to
understand the differences between quantitative and symbolic samples for
successful multimedia understanding.

5. Eventually, we state a general morphological resemblance between media
objects, descriptions and class labels. The sizes of these data types are
fundamentally different due to the information filtering effect of media
understanding. Their usage, though, is not. Media descriptions are still –
abstracted – media content and class labels are judgments on media content
with respect to a given context (query). In fact, in the media understanding
process class labels are frequently used as additional – semantic – input
for refinement processes.

The feature transformation step, often a signal processing application, con-
stitutes the largest barrier between the single-media understanding disciplines.
While most categorization methods are domain-independent (though sometimes
used with different names and minor modifications), the feature transformations
are usually considered very specific for the type of given media and understand-
ing problem. Open-minded comparison of the methods reveals that, in reality,
the differences are not that big. In the first part, we identified the following
major aspects of the feature transformation process.

Windowing (Auto-)Correlation
Maximum

Figure 11.1: Summarization, Peak Detection and Correlation.

1. It appears that most feature transformation processes have a similar dra-
maturgy. Some localization step is followed by a weighting or convolution
step over some template or a piece of the medium itself. Eventually, the
results are aggregated again. We consider these elements the basic build-
ing blocks of feature transformation. Since the complexity of this issue is
far beyond discussing it within the boundaries of this list, we dedicate the
entire Section 11.3 to this purpose.
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2. Besides their structural similarities, most feature transformations seem to
pursue one of only three goals: description by summarization of media
chunks (windowing), by maximum identification (peak detection), or by
correlation of neighboring media chunks. See Figure 11.1 for audio ex-
amples. The first method performs reliable redundancy elimination. The
second method summarizes by emphasizing important (in whatever sense)
samples. The third method provides pattern recognition either within the
media object (autocorrelation) or between a media object and some object
of interest (crosscorrelation, e.g. with a face template). It is beneficial to
keep these fundamental types of feature transformation in mind, because
they allow for easy cross-media categorization of extraction algorithms.

3. Among the most important summarization-based feature transformations,
we encountered the methods zero crossings rate, short time energy, visual
keywords, color histogram, statistical moments, and text summarization.
The zero crossings rate is as popular in audio understanding as it is in
biosignal processing. Histogram methods are applied on almost all types
of media while text summarization is, in fact, the same process on text as
visual keywords are on visual data.

4. Outstanding maximum-based feature transformation methods are attack
time, dominant colors, edge extraction, and resistance/support lines. The
attack time measures an audio feature very similar to the (recurring) re-
sistance line of stock data. Dominant colors are those with maximal visual
impact on human perception. Edges are per se defined as points of maxi-
mal contrast.

5. Eventually, important correlation-based feature transformation methods
are linear predictive coding, MPEG-7 harmonicity, the correlogram, object
contours, MPEG-7 color structure, and SAR textures. Linear predictive
coding is a typical autocorrelation transformation while object contours
are normally based on template matching. SAR textures and color struc-
tures are hybrids, since they merge correlation with summarization and
maximization aspects. However, the basic characteristics (identification of
recurring patterns) are clearly of the correlation form.

6. Most successful feature transformations are influenced by psychophysical
findings (see Chapter 23). Psychophysics describe the relationship be-
tween the outside world (reality) and subjective perception of this reality.
Most of the fundamental methods are näıve in the sense that they do not
explicitly address psychophysical issues. Instead, their popularity is a re-
sult of the coincidence that they fit with our perception. In the second
part of this book, we will encounter feature transformations that exploit
psychophysical knowledge explicitly.
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7. The MPEG-7 standard was an important stimulus for the development of
audiovisual feature transformations. In particular, in the audio part of the
standard some very successful methods were defined for the first time. Un-
fortunately, audio and visual methods were developed separately ignoring
the many similarities and common problems that would have existed for
the two problem domains.

One feature extraction method is usually not sufficient to solve a media
understanding problem of average complexity. Instead, a mix of transformation
is typically employed. The result is the introduction of redundancy since any
two methods will hardly produce orthogonal results. In this case information
filtering has to be employed for redundancy elimination. So far, we identified
the following major aspects of media understanding information filtering.

1. The generation of a feature space by normalization and merging of descrip-
tions is a prerequisite of multimedia understanding. Normalization aligns
the individual description elements along the same scale while merging
joins descriptions originating from different transformations and/or media
channels.

2. Redundancy elimination is the fundamental information filtering task in
media understanding. Redundancy hinders the categorization process and
has a negative effect on the algorithmic performance. Factor analysis, for
example by principal component analysis, is a popular form of redundancy
elimination but has the drawback that the resulting factors are hardly in-
terpretable perceptually. However, this form of feature space optimization
yields high-quality results.

3. The information filtering methods employed for summarization (statisti-
cal moments, regression, etc.) are related to both the summarization-
based feature transformation methods (they summarize descriptions like
the transformations summarize samples) and certain categorization meth-
ods. In particular, regression is the base of the risk minimization models
introduced in Chapter 18.

In the categorization step of the big picture, we take the turn from sum-
marization to contextualization. The two preceding steps filter the information
content of the media source but do not alter it according to some context. Cat-
egorization is media interpretation. The resulting class labels are only valid in
some given semantic setting. Hence, they express a high-level (perceptual) prop-
erty of the media content that can be used in follow-up media understanding
iterations as an additional type of descriptions. In the first part of the book, we
have identified the following major aspects of the categorization process.
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Figure 11.2: Categorization by Hedging (dotted) and by Separation (dashed).

1. The four fundamental approaches relevant in media understanding to-
day are rule-based, distance-based, probabilistic, and neural categorization.
Rule-based approaches discriminate by logical expressions and can be em-
ployed on any type of description, while distance-based approaches require
quantitative samples and some form of underlying geometry (e.g. a vector
space with interval-scaled dimensions). Probabilistic and neural catego-
rization employ both complex weighting processes. In the first case, the
weights come from general statistical facts about the media population
under investigation. In the second case, the weights are derived from ex-
amples.

2. Matching, retrieval and browsing are the three fundamental purposes of
categorization in media understanding. The 1:1 matching of media objects
is a special case of retrieval, where a media database is split into a class of
relevant and a class of irrelevant objects. Browsing requires associating a
semantically valid class label to any member of the media population.

3. Almost all categorization methods can be split into a macro process and
a micro process. The micro process performs the categorization of one or
one pair of media objects against each other or a reference. The micro
process is embedded in the macro process which encapsulates the entire
process of classifier training and application. The need for training of the
majority of methods implicates the provision of a training set and a test
set of media objects. Usually, the training set is a subset of the test set.

4. Furthermore, categorization methods can be divided in two groups: separa-
tors and hedgers. Figure 11.2 illustrates the two groups. While separators
try to put a division line between classes of media objects, hedgers try
to rope in groups of similar objects. For example, the VSM classifier is a
hedger that hedges around a query example and the k-means is a separator
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that creates a Voronoi tessellation. Other hedgers are cluster analysis and
k-NN. Decision trees and probabilistic methods are separators. Naturally,
separators are tailor-made for retrieval tasks. Hedgers perform excellently
in browsing tasks. However, both types of classifiers can be adapted to
the requirements of both types of tasks with little effort (e.g. serialization
of n separators for browsing). The distinction in separators and hedgers
is only a preliminary step to understanding the communalities and differ-
ences of categorization algorithms. A more detailed analysis can be found
in Chapter 21.

5. There is a fundamental difference between probabilistic categorization and
the three other types. Probabilistic categorization can express temporal
relationships between media objects. In particular, Markov processes pro-
vide this capability. In contrast, distance-based and other categorization
models provide static judgments. Hence, these methods are not directly
applicable in dynamic media understanding situations.

6. Eventually, there are typical pairings of description types and categoriza-
tion methods. For example, histograms are often compared by distance-
based models (for example, Minkowski distances) or by distance meta mod-
els such as the earth mover’s distance. Shapes are frequently classified by
meta models such as the Hausdorff distance. Words are typically com-
pared by predicate-based measures such as the Hamming distance. These
are just examples of successful combinations. In Chapter 21 we will provide
a thorough analysis of this issue.

Most media understanding problems are far too complex for being solvable
by one iteration of the big picture. The solution is media understanding of
media understanding, i.e. the iterative application and sub-application of media
understanding methods. Some problems can be overcome by simply repeating
the media understanding process and applying iterative refinement by relevance
feedback. In other cases, more sophisticated strategies are required. One example
would be the usage of class labels as semantic description elements – thus feeding
them back in the categorization process.

Furthermore, media understanding processes are often embedded in advanced
feature transformation methods. For example, local visual feature transforma-
tions (see Chapter 14) usually employ a media understanding process inside the
feature selection procedure. Of course, such processes, possibly combined with
iterative refinement, are highly cybernetic and, therefore, require a sophisticated
control mechanism.

Eventually, media understanding of media understanding can also be em-
ployed for performance optimization. Frequently, a rapid low-level procedure
with simple descriptions, general filtering and fast categorization is employed
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for pre-selection of potentially interesting media objects. Then, in internal re-
finement iterations, more sophisticated methods are employed for fine-tuning of
the results. Such methods are typically applied on large-scale databases.

We would like to conclude this section with reminding the reader that despite
all the clever methods introduced so far, overcoming the semantic gap is still a
vary hard problem. For many real-world applications, more advanced approaches
are required that will be discussed in the second part of this book. In the next
section, we go into further detail on one fundamental component of the big
picture of media understanding and structure the building blocks of feature
transformations.

11.2 Building Blocks of Feature Transformations

We have seen that very similar – sometimes the same – methods are employed
on different media types for feature extraction. Localization by windowing, for
example, is employed on brain waves as well as video. What is different are
mostly the media properties such as frequency or resolution. The fundamental
algorithms are often the same. Below, we formalize this insight by defining a few
building blocks that appear in most feature transformations. We then structure
our knowledge about feature extraction along the raster of these building blocks.

The motivation for the introduction of building blocks is threefold. Firstly, a
vague understanding of the methodological similarities of transformations is nice,
but being able to structure arbitrary algorithms by the same components allows
for detailed understanding of similarities and differences and, in consequence,
for introducing a method in areas where it has been ignored so far.

Secondly, knowing and understanding the basic building blocks enables the
practitioner to understand a newly introduced method easily and quickly. Media
understanding research today is to a large degree about defining feature transfor-
mations tailor-made for a particular problem domain. Such transformations may
become very complex. This hindering factor of understanding can be overcome
if the methods can be structured into a few steps with well-known purposes.

Thirdly, from many years of media understanding research we have learnt
that the one perfect solution to all media understanding problems is proba-
bly an illusion. Instead, narrowing down the problem domain and developing
specialized solutions is a practically doable engineering scheme. For its execu-
tion, it would be highly convenient if feature transformations could be generated
(semi-)automatically. Building blocks with well-defined interfaces could be re-
combined (for example, by a genetic algorithm) until a sufficiently good solution
for given training data is found. This idea will be developed further after the
introduction of the building blocks.

Figure 11.3 illustrates the building blocks of feature transformations and



11.2. BUILDING BLOCKS OF FEATURE TRANSFORMATIONS 209

Medium

Localization

InterpretationAutocorrelation
Crosscorrelation

by Templates
and Wavelets

Aggregation

ReductionQuantization Decorrelation

Description

Figure 11.3: Feature Extraction Building Blocks.

their typical organization – the sequence may vary, of course. One fundamental
element is a bracket of localization and aggregation. In Appendix A.6 we name
these two instances of a transform function loci and aggi (i being the identifi-
cation of one particular method). The localization function takes a media object
and structures it in a set of media chunks. The localization may be performed
along fixed window sizes, edges, contours, stop words or some other criterion.
Important is, that one object is divided into many. For that, the neighborhood
operator θ defined above can be used. The aggregation function performs the
operation inverse to localization. Typical examples of localization and aggrega-
tion are the short time energy transformation which works on windows of fixed
size and descriptions that are averaged over n windows. The computation of
statistical moments is a common aggregation operation.

Within the localization bracket most feature transformations perform some
interpretation operation, which can be of two fundamental types: autocorrelation
or crosscorrelation (functions acorri or ccorri, respectively). Both operations
are based on convolution, which will be discussed in the next paragraph. In the
first case, however, a media chunk is compared to a neighboring media chunk, i.e.
from the same source, while in the latter case, a media chunk is compared to some
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external object. A typical example of autocorrelation is linear predictive audio
coding. Crosscorrelation is, for example, employed in edge detection (the Sobel
operator is an external source), integral transforms (see Chapter 12), template-
based face matching, etc.

It is very interesting to note that these building blocks which are of highest
significance for all feature transformations that go beyond straightforward sum-
marization are based on just one simple operator. Convolution is performed for
autocorrelation as well as crosscorrelation of two media objects. The two cases
can be written as follows:

acorri(o, δ) = θ(o, l, ·)⊗ θ(o, l − δ, ·) (11.1)
ccorri(o, otemplate) = o⊗ otemplate (11.2)

In the equations, we employ convolution based on the inner product, because
this is the most frequent form. However, convolution based on difference may
be employed as well (see Section 3.3). In the second case, some object o is
convoluted over some template. In the first case, it is convoluted at all positions
l with itself at distance δ. The template may, for example, be from the list in
Appendix A.3, i.e. some wavelet, waveform, edge operator, etc.

First param Second param Type of correlation Example
ox oy Global correlation Object similarity
ox ox−δ Spatial autocorrelation Symmetries
ot ot−δ Temporal autocorrelation Linear prediction
ox otemplate Template matching Face recognition
ox onormal Scaling Gaussian blurring
ox osine Spectrum computation Fourier spectrum
ox osobelh Edge extraction Sobel edges
ox E(ox) Statistical moments Mean

Table 11.1: Forms of Media Interpretation.

Table 11.1 lists a few examples of interpretation operations in feature trans-
formations. The first two columns are the parameters of the convolution opera-
tor. In the last row, E() stands for the expected value over all ox. The table puts
such important operations as scaling and spectrum computation in context with
autocorrelation and template matching. Technically, indeed, all these operations
are based on convolution.

Returning to Figure 11.3, the fourth major type of building block is reduc-
tion, which may occur as quantization or decorrelation (quanti or dcorri, re-
spectively). Decorrelation covers all operations that eliminate redundancy (e.g.
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factor analysis) while quantization covers everything from coarse representation
to weighting (e.g. by psychophysical functions). That is, decorrelation considers
the similarities between description elements while quantization focusses on the
individual element. In this sense, reduction operations may be interpreted as
filtering operations. Quantization need not necessarily be performed at the end
of the feature transformation process. This step may also be executed before
interpretation or even before localization or multiple times. For example, the
adaptation of the feature extraction process based on relevance feedback may be
performed before interpretation (e.g. weighting of media samples).

In summary, we propose four major building blocks of feature transforma-
tions: localization, interpretation, aggregation and reduction. Interpretation is
always based on convolution while reduction may focus on isolated numbers or
similarities between numbers. Table 11.2 provides a few examples of methods
employed in the individual building blocks for different types of media. The
localization and aggregation methods are very similar for the same types of
samples (quantitative, symbolic). The interpretation methods are distinct for
the types of media. In audio, time plays a very important role. Hence, temporal
autocorrelation is a frequent tool. In the visual area templates are of paramount
importance. Reduction, eventually, employs the same types of methods on all
types of media but uses different weights – mostly derived from psychophysical
findings.

Building Audio,
block biosignals Images, video Symbolic data
Localization Windowing, Segmentation, Stop codons,

band filter scale space punctation
Interpretation Temporal auto- Wavelet spectrum, Word count,

correlation, template motif identification
Fourier spectrum matching

Aggregation Mean, deviation, Histogram, most Bag of words,
correlogram frequent items text summary

Reduction Psychoacoustics JPEG tables Singular values

Table 11.2: Examples of Building Blocks per Media Type.

Before we conclude this section, we would like to employ the grid of build-
ing blocks for a discussion of the properties of good feature transformations.
Generally, a well-performing feature transformation should fulfil the following
requirements:

1. Discrimination. The resulting description elements should show high vari-
ance between objects that belong to different categories.
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2. Stability. The description elements should have low variance for objects
that belong to the same category.

3. Performance. The feature transform can be computed as quickly as pos-
sible.

4. Efficiency. The resulting description expresses the human categorization
in as few values as possible.

5. Generality. The transformation employs as little as possible and as invari-
ant/timeless as possible context information.

6. Interpretability. The description expresses a semantic, explainable cate-
gory.

The first two requirements are the same as in canonical correlation analysis
and linear discriminant analysis (see Chapters 16, 18 for details). It must be
the paramount goal of a feature transformation to distinguish different classes
by different values. The second pair of requirements aims at computation issues.
The smaller the data the quicker the categorization can be performed. The third
pair deals with context information. On the one hand, little context should be
employed in the extraction process – for the sake of flexibility. On the other
hand, the results should easily be interpretable. Obviously, these two goals – as
the other pairs – are conflicting. It depends on the application designer to build
a feature transformation that reaches the global optimum.

Requirement loc acorr ccorr agg quant dcorr
Discrimination + + – –
Stability + + + +
Performance + – – + + –
Efficiency – + + + + +
Generality + – –
Interpretability – + + + –

Table 11.3: Influence of Building Blocks on Requirements of Feature Transfor-
mations.

Table 11.3 summarizes the influence of the building blocks on these require-
ments. Positive and negative influences are only given, where we see a clear
relationship. Localization, for example, has a favorable influence on the per-
formance, since it enables a divide and conquer strategy. Efficiency and in-
terpretability are influenced negatively, because more values are generated and
most localization methods do not separate chunks along semantic division lines.
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Auto- and crosscorrelation are mostly positive for reaching the goals of fea-
ture transformation. Their major drawback is the bad performance. Crosscor-
relation by templates, furthermore, reduces the level of generality. Aggregation,
as a source of redundancy, has a negative influence on the discrimination capac-
ity which causes a necessarily positive influence on stability. Performance and
efficiency are both positively influenced by aggregating some numbers. Quan-
tization and decorrelation both increase efficiency, the first one for the price of
generality, the latter for less interpretability and bad performance.

We would like to conclude this section by pointing out how the building
blocks of feature transformations can be employed for easier media understand-
ing. Today, one of the biggest problems of media understanding is designing
good feature transformations. Categorization, in comparison, is a much simpler
problem since the best classifier for given test data can be selected automatically
(e.g. by Weka [378]). Similar to that, feature transformations could be assem-
bled from instances of building blocks (classes of methods) with standardized
interfaces. Localization, aggregation, interpretation and reduction could easily
be described by input and output functions (e.g. 1 : n, m : n). Standardized
methods given, identifying the best feature transformation and classifier for given
test data would be reduced to a recombination problem. One solution could be
the description of the process by a gene string and optimization using a genetic
algorithm with a media understanding evaluation function for assessment. In
consequence, media understanding research would be reduced to the definition
of new instances of building blocks, not their (tedious) recombination.

11.3 A Bigger Picture of Media Understanding

In this section, we distill the results of the two previous sections and augment the
big picture of media understanding. After introducing it we discuss context and
semantics, refinement based on evaluation and ground truth and the resulting
cyclic media understanding process.

Figure 11.4 shows the bigger picture of media understanding. The dotted
elements extend the original picture by components that were discussed in the
first part. Feature extraction is influenced by additional sources of informa-
tion subsumed as context. The same data are also fed into the categorization
process – in particular, during training. Training of classifiers is, furthermore,
controlled by the training data in the form of ground truth and/or references.
The resulting categorization is evaluated by the methods discussed in Chapter 10
and forwarded to a refinement procedure that manipulates the feature extraction
process as well as categorization. The cycle of feature extraction, categorization,
evaluation, refinement is another instance of media understanding of media un-
derstanding. If the evaluation employs user input (relevance feedback) we call
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Figure 11.4: Bigger Picture of Media Understanding.

this putting the human in the loop.
Context influences the two major steps of media understanding. It must,

therefore, be something important. Also known as world information context
comprises all information relevant to the problem domain. Figure 11.5 names a
few types. The inner circle lists more typical forms of context, the outer specific
and technical instances of context. Location and time are arguably the most im-
portant types of context. The time when something happened, and the location
where it happened have a definite influence on the semantic setting of a (media)
event. Quality of service and battery status are important forms of context in
mobile setups. These aspects may influence the media understanding process as
a whole by, for example, selection of battery-saving extraction methods. Other
types of context, such as topic and line of business are only relevant for specific
problem domains. The figure lists just a few types of context. Many more do
exist.

The application of context reduces the level of generality of a media under-
standing solution. It should, however, have a positive influence on both discrimi-
nation ability and interpretability by accelerating the specialization process that
is performed in the categorization step. Using context in media understanding
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Figure 11.5: Some Types of Context Information.
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Figure 11.6: Application of Context Information.

applications will always be performed with the goal to increase the semantic level
of the resulting categorization. Technically, the application can be performed as
described in Figure 11.6. There, context data is employed to control the process-
ing of the media data. A typical example would be the usage of spatiotemporal
context for the elimination of irrelevant media samples, i.e. rule-based filtering
like in a decision tree. Another option would be the filtering and/or adapta-
tion of ground truth/references. Sometimes though, context may be source as
important as the media data. For example, information about varying temper-
ature can be an independent data stream in environment surveillance. Simply,
spatiotemporal context data can be treated as additional description elements.

The second element that extends the big picture is the training data for
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the categorization – present in the form of references or ground truth. Such
data are crucial for the specialization process. They may, therefore, be seen
as a very particular type of context information: use cases. In fact, training
data are more relevant than the actual categorization method since the latter is
typically selected based on its performance on the training data. In consequence,
one of the most important steps in solving a media understanding problem is
assembling high-quality training data. Such data must fulfil the following two
requirements:

1. It must contain examples for all cases that may appear practically.

2. Ideally, all cases should be represented with the same frequency with which
they occur in reality.

Both requirements appear trivial but are – for practically relevant problem
domains – very hard to fulfil. In fact, assembling an expressive ground truth is
more an art than science. Considering further the (unjustly) low potential for
scientific merit and the high costs explains why assembling high-quality training
data is one of the most neglected issues in media understanding today.

f1 f2 .. fn

c1 c2 .. cn

Patterns

m(fi, ri) < εi

Proto-predicates

Predicates

Figure 11.7: From Patterns to Predicates.

Evaluation – either based on training data or user feedback – leads to re-
finement of the media understanding process. Iterating this loop is one way to
narrow the semantic gap between low-level methods and high-level demands.
One particularly important cycle of iterative media understanding is illustrated
in Figure 11.7: the transition from quantitative descriptions to qualitative de-
scriptions (class labels, predicates). If the media samples are quantitative, this
process transforms measurements into predicates that describe the media data
from the perspective of training data, context and categorization method. Natu-
rally, the resulting predicates can be employed as another source of context and
fed back into the feature extraction and/or categorization process. Technically,
the transgression from quantities to proto-predicates can be based on any catego-
rization method. Frequently used approaches are rule-based and distance-based
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methods. In the figure, for example, we measure the distance of some sample
fi to a reference ri (given) by some measure m. If the distance is smaller than
some threshold εi we consider a particular property given (ci = 1) otherwise not.
For example, if a particular stock value fi is above a given resistance threshold,
we consider the market under consideration to be booming.

In conclusion, the bigger picture of media understanding contains all major
components of a professional media understanding system – no matter if focused
on audio, visual or symbolic material. We have emphasized that, eventually, the
quality of the ground truth is decisive for the quality of the media understand-
ing process. Providing high-quality ground truth information is a non-trivial
time-consuming task but most likely worth the effort. Furthermore, provision
and application of context information are of highest importance for the bigger
picture. Since the bigger picture is a realistic carcass of the media understanding
process, we will structure the second and third part along its flow of information.
The last section of this chapter provides a brief overview over the second part.

11.4 Overview Over Advanced Methods

Like in the first part, the chapters of the second part are organized along the
big picture. That is, first we deal with advanced feature transformations, then
advanced filtering, advanced categorization and, eventually, advanced evalua-
tion. In feature transformation, we have two foci. Firstly, the computation and
usage of spectral descriptions and, secondly, computation and usage of local de-
scriptions. The focus in categorization is on risk minimization. Furthermore,
the dynamic categorization methods already introduced in the first part will be
extended by sophisticated, practically highly relevant methods. The remaining
paragraphs of this section give a brief outlook on the contents of the second part.

Above we introduced localization as a base function of feature extraction.
By spectral transforms, we intend to free our features from the drawbacks of the
temporal domain – for example, the inflexibility of neighborhoods of samples.
We introduce unitary transforms as the means for the averaging of spectrally
related components. Digital transforms are one application of crosscorrelation
by waveforms and wavelets. The result of integral (digitally, in fact, summariz-
ing) transforms is a spectrum. Many advanced feature transformations in the
audiovisual domain are based on spectra. Good knowledge of such methods is of
fundamental importance for the media understanding expert. Hence, we discuss
unitary transforms and spectral feature transformations in two chapters.

Localization is the second focus of feature transformation. We already men-
tioned that the human eye is a scanner that generates a stream of local de-
scriptions. In the visual domain, local features imitate this behavior. However,
localized methods are equally important in the other domains. We will discuss
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Similarity Grouping Symmetry, Closure

Figure 11.8: Examples of Gestalt Laws.

methods for the detection of interest points, i.e. neighborhoods with significant
content, as well as their description. Solving the latter problem requires achiev-
ing invariance against rotation and other transformations. We will, furthermore,
make a first step into local semantic features by discussing Gestalt properties
(Figure 11.8) and their influence on interest point selection. Eventually, descrip-
tion of motion will be discussed as an application of local media features.

The advanced information filtering chapter will extend the fundamental meth-
ods discussed in the first part. We will discuss feature selection, merging of
variable-sized descriptions and important signal processing operations such as
source separation. The goal of this chapter is to make the reader familiar with
a set of practically relevant tools without going too deep into the theory of
information filtering.

The categorization chapters of the second part start with a formalization
of machine learning. The methods discussed in the first part will be set into
context, and gaps (mostly of theoretical nature) will be filled with the current
state of the theory. We will discuss the differentiation of categorization methods
into hedgers and separators but as well show that for some problems of machine
learning, no satisfactory solution has been identified yet.

The introductory chapter prepares the ground for sophisticated categoriza-
tion methods that learn over time. One chapter discusses all methods based on
the risk minimization principle. These methods are mostly based on the linear
regression model. However, by the introduction of some very nice twists new,
extraordinarily powerful classifiers have been developed. We will endeavor to ex-
plain how they work and what similarities exist between them. These methods
are typically separators.

The dynamic categorization models discussed in the subsequent chapter are
mostly based on the principles of probabilistic categorization. For example,
expectation maximization (introduced as one solution of the sampling problem)
will be employed for the learning of classifiers that base their decisions on a
reasoning somewhere between beliefs and risk minimization. Naturally, such
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methods are hedgers.
Eventually, the evaluation chapter will mop up everything that could be said

about the evaluation topic but was not in the first part of the book. In particular,
we will discuss what can be done if no ground truth is available. The methods
will be set into context and novel solutions for yet unsolved problems will be
introduced.

In summary, the second part introduces a vast number of practically relevant
media understanding methods. It is based on the material presented in the first
part. We intend to provide everything in the second part, that is required for
the practical application of media understanding. The third part will go beyond
this state by bringing up problems of active media understanding research.





Chapter 12

Transforms in Media
Understanding

Introduces the concept of spectral representation by discrete transforms, discusses
several continuous and time-limited bases, distinguishes wavelet functions by
their characteristics and introduces two major parametric transforms.

12.1 Introduction to Unitary Transforms

In this chapter we provide the basis for spectral descriptions – a highly impor-
tant group of feature transformations for quantitative media sources. Spectral
descriptions are generated from the media source by discrete unitary transforms.
This section introduces the general model of discrete transforms, its first ma-
jor exponent, the Laplace transform and discusses applications relevant to the
media understanding domain.

The motivation for using discrete transforms is that they compute a spectrum.
For our purpose we see the spectrum of some signal as the set of coefficients
(weights) of some – to be defined – base functions with the property that the
sum of weighted base functions is equivalent to the signal. The base functions are
well-known and fixed. Hence, the coefficients are representative for the signal.
Now, if we choose the base functions wisely, we can gain significant advantages
such as simpler computation and easier interpretation of the spectrum than of
the original signal. For example, if the base functions are sine waves, the music
coefficients can easily be interpreted as the overtone structure. In the first part
we introduced the gravity of the sample problem (semantic gap) as the difficulty
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to see the semantic meaning in assemblies of samples. Discrete transforms help
to overcome this problem, since in the spectrum each coefficient aggregates over
all samples. Generally, discrete transforms help interpretability by transforming
a time-based signal to one that is based on a – hopefully, semantic – set of base
functions.

The general model of spectral transformation is the integral transform of the
following form:

os(y) =
∫ ∞
−∞

k(x, y)o(x) dx (12.1)

Here, o is the media source, os is the spectral representation, x is the iter-
ator for the time domain and y is the iterator over the base functions k(x, y).
The general model of the integral transform was developed from the Laplace
transform. It establishes an isomorphism between the time-based signal and
the spectrum based on functions k(x, y). The back transformation is defined as
follows:

o(x) =
∫ ∞
−∞

k−1(x, y)os(y) dy (12.2)

That is, transform and back transform are symmetric. There is no loss
of information. The transform provides just a base change. Often, k(x, y) =
k−1(x, y). This equivalence is, for example, true for the Laplace transform and
the Fourier transform (see below).

From the definition it becomes clear that integral transforms are not ap-
plicable to symbolic data sources. The entire model assumes some degree of
neighborhood between samples. Since the base functions are typically smooth,
neighboring samples are aggregated with similar weights. Such a concept of
neighborhood does per definition not exist in symbolic media. Hence, spectral
transformation is only relevant to quantitative media domains.

The general model of integral transforms is nice but not directly applicable
to digital media objects. In the discrete domain, Equation 12.2 is written as
follows:

os(y) = 〈k(x, y), o(x)〉 = k(x, y)⊗ o(x) (12.3)

A discrete unitary transform is nothing else than convolution of some signal
o(x) over some base k(x, y). Of course, the back transform is defined equiva-
lently:

o(x) = 〈k−1(x, y), os(y)〉 = k−1(x, y)⊗ os(y) (12.4)

The set of base functions k(x, y) may be seen as a template representative
for the media domain. For example, for audio signals a set of sine waves may be
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suitable. For the visual domains (mind the importance of edges!) a set of step
functions may be suitable, etc. We will discuss this issue – reasonable pairings of
media sources and base functions – in the next two subsections. The convolution
of source and template is maximal if the two signals are identical. Hence, the
resulting spectrum measures the degree of similarity between signal and base.

Since all practically relevant discrete transforms are based on positive con-
volution, this type of operation is an interpretation of the media content, specif-
ically a crosscorrelation of media data and base functions. It is general practice
to employ the positive convolution for spectrum computation. However, nega-
tive convolution could be employed as well. Then, the spectrum would measure
the difference between signal and base functions. As we mentioned in the first
part (and will discuss further in the third), positive convolution is a similarity
measure for separable stimuli (e.g. lists of predicates) while negative convolu-
tion is a distance measure for integral stimuli (e.g. lengths of objects, but as
well wavelengths). The quantitative media objects subject to discrete transform
are integral by nature. Hence, negative convolution may compute spectra that
can more easily be interpreted. Unfortunately, hardly any research has been
conducted on this question so far. It would be interesting to see whether a
transformation based on negative convolution would be superior for some types
of media.

The usage of discrete transforms in media understanding may appear arbi-
trary without the knowledge of the origin of these transformations, their typical
applications and their interpretation. The following list provides the history in
brief form.

1. Laplace developed his transform in 1785 with the intention of being able
to solve certain differential equations more easily in the spectral domain.
Inspired by the works of Euler, he established the entire model and in-
troduced the base k(x, y) = e−xy = k−1(x, y). The Laplace transform
allows to represent integration and differentiation in the time domain by
multiplication and division in the spectral domain. However, the existence
of a back transformation was of highest importance, since the result was
needed in the time domain.

2. In 1822, Fourier extended Laplace’s base to k(x, y) = e−ixy which may
appear weird at first sight. However, according to Euler’s formula e−ixy =
cos(xy)− i sin(xy) (see next section), i.e. the complex spectrum can nicely
be interpreted as a set of sine waves with different frequencies. The back
transform is equivalent to the forward transform.

3. In 1909, Haar introduced the first known set of base functions that was
not continuous but time-limited. This Haar wavelet will be discussed in
Section 12.3. Time-limited base functions can more easily be applied on
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discrete data sources than continuous – an advantage that hardly mattered
to Haar (who was still interested in solving differential equations) – but
which became very important when computational image analysis started
to develop in the 1950ies.

4. Around 1950, Gabor tried to overcome the problems of continuous base
functions by a windowed Gaussian function (see Section 12.3). The wavelet
idea was yet undiscovered then, so, paradoxically, the Gabor function is
an intermediate step between continuous and time-limited bases that was
developed decades after the satisfactory final solution.

5. Around 1990, the wavelet theory was fully developed, the Haar wavelet
was rediscovered and others were introduced. Wavelets became, for ex-
ample, state-of-the-art in image compression and were also used in image
understanding.

This brief history should make clear that discrete transforms where developed
for applications completely different than media understanding. For example, in
media understanding the existence of a back transformation is irrelevant. The
spectral description has to be representative of the media object but it is not
required to reconstruct the signal from the description. Furthermore, we only
consider digital signals that are somehow windowed. Therefore, continuous base
functions are only of limited interest in media understanding. In summary, for
media understanding base functions can be viewed best as templates and discrete
transforms as the act of interpretation that allows to overcome the gravity of
the sample using the template as a semantic bridge.

Not all transforms were designed as unitary. Two major exceptions are the
Radon transform (1917) and the Hough transform (1959) which are more or less
equivalent. Transforms that do not have a back transform are frequently called
parametric transforms since the output depends on the control parameters of
the transform – for which unitary transforms would provide no space.

The remainder of this chapter is structured in three sections. In the next,
we introduce the Fourier and the cosine transform, two examples for transforms
that employ continuous bases. Section 12.3 discusses wavelet transforms, i.e.
transforms that employ time-limited bases. The last section discusses the Radon
and Hough transforms as two parametric transforms that are very important in
for media understanding.

In conclusion, the introduction of spectral transforms opens an entirely new
domain for feature extraction. Chapter 13 is dedicated to spectral descriptions.
The Laplace transform is the role model for all unitary transforms. However, in
media understanding it is only of theoretical relevance. Practically relevant are
the Fourier and cosine transforms discussed in the next section.
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12.2 Transforms with Continuous Bases

This section deals with discrete transforms that employ waveforms as bases,
i.e. signals that are defined for the interval ] −∞,∞[. Two transforms are of
outstanding importance in this domain: the Fourier transform and the cosine
transform. We discuss their communalities and differences based on the spectra
created for visual and audible examples.

The Fourier transform (FT) is employed in the same way as the Laplace
transform, only the base function is different:

os(y) = 〈k(x, y), o(x)〉 = k(x, y)⊗ o(x) (12.5)

k(x, y) = e−ixy (12.6)

The back transform – though hardly relevant for media understanding – is
symmetric to the transform.

As pointed out above, the Fourier kernel may appear surprisingly complex
at first. However, it is equivalent to a complex combination of sine waves.

e−ixy = cos(xy)− i sin(xy) (12.7)

This equation is known as Euler’s formula. It can easily be proven using the
Taylor series expansions of ex and the trigonometric functions.

sin(x) =
x

1!
− x3

3!
+
x5

5!
+ ...

⇒ −i sin(x) = −i x
1!

+ i
x3

3!
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5
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+ ...
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⇒ cos(xy)− i sin(xy) = 1− i x
1!
− x2

2!
+ i

x3

3!
+
x4

4!
− ix

5

5!
+ ... (12.8)
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x
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2!
+ i

x3

3!
+
x4

4!
− ix

5

5!
+ ... (12.9)

Equations 12.8 and 12.9 are obviously equivalent.1

Hence, the FT has a major advantage over the Laplace transform. The
(complex) coefficients can intuitively be interpreted as weights of sine waves with

1Euler’s formula is also the basis of Euler’s identity eiπ + 1 = 0. No relevance for media
understanding, just beautiful.
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increasing frequency. This property makes the Fourier transform very interesting
for some areas of media understanding, namely audio understanding, biosignal
understanding and stock analysis. The only problem is that the Fourier spectrum
is complex. In practice, we often use the real part or the complex part of the
Fourier transform only. Then, we speak of the real FT or cosine FT, etc. Of
course, the back transformation is lost in this case. The attempt would result
in a phase shift.

The FT has a number of mathematical properties that make calculations in
the spectrum easier than in the time domain. For example, linear combinations
in time domain remain linear combinations in the frequency domain (spectrum).
Shifts in time domain or frequency domain cause weighting by some ef(x) in the
other domain, etc. Some of these properties cause nice side-effects in media
understanding that will be discussed where encountered. Before we investigate
the Fourier spectrum a bit closer, one further term has to be mentioned. The fast
Fourier transform is an algorithm that reduces the complexity of computation
from O(n2) to O(n log n). As frequently the case in dynamic programming (see
Chapter 19), this reduction is reached by replacing one loop by a recursion –
thus shifting part of the algorithmic complexity to the local memory.

Signal

4% Coeff.

8% Coeff.

32% Coeff.

Figure 12.1: Fourier Approximation of a Square Wave.
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Figure 12.1 shows three different Fourier spectra for a square wave (400
samples). The first line shows the signal. The second to fourth lines show
spectra with 16, 32, 128 coefficients (4, 8, 32 per cent of samples), respectively.
That is, all higher coefficients computed by the discrete transform were omitted.
The result is a band-limited signal with the given number of coefficients. As
can be seen from the graphs, the approximation becomes more accurate for less
limited spectra. The first approximation is a pure sine wave. Doubling the
number of coefficients adds overtones that improve the approximation. At 32%
the approximation is already fair.

Signal

4% Coeff.

8% Coeff.

32% Coeff.

Figure 12.2: Fourier Approximation of an Image Signal.

Figure 12.2 shows the same process for a typical image signal (the center line
of the leading example shown in the next figure). As can be seen, the approxi-
mation at 4% coefficients is already surprisingly good. Major difficulties arise at
the peak section at approximately two thirds of the signal (presumably, edges).
This result is typical for the Fourier transform. The first approximation is good
for smooth signals but bad where sudden changes occur. Adding coefficients
improves the reconstruction linearly. That is, the information of the signal is
distributed over all coefficients of the Fourier spectrum. This property makes it
tailor-made for audio understanding where such a spectrum provides valuable
information on rhythm patterns and overtone structures.

For image information and human visual perception of edges, the Fourier
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transform is not ideal. The discrete cosine transform (DCT) outperforms FT on
such signals. There is no general definition of the CT. Instead, several variations
do exist. One typical definition is the so-called DCT-II that uses the following
base signal.

k(x, y) = cos
(
π

n

(
x+

1
2

)
y

)
(12.10)

Before we continue with comparing Fourier transform and cosine transform
visually we have to explain that both transforms (in fact, most discrete trans-
forms) are separable. That is, the same algorithm can be applied on two-
dimensional, three-dimensional, etc. data as on one-dimensional data. Prac-
tically, the spectrum of a two-dimensional signal is first computed over all
lines/columns of the signal and than over the other dimension. The result is
still a valid spectrum.

Figure 12.3 compares the Fourier transform (first column), the cosine trans-
form (second column) and a Haar wavelet transform (third column, see next
section) for one frame of the leading example. Each line displays the image sig-
nal reconstructed from a band-limited spectrum at 99%, 90%, etc. of the total
coefficients. That is, only the first n per cent of the coefficients were used for
reconstruction.

As can be seen, the Fourier spectrum shows an immediate loss of quality.
Cosine and wavelet spectra remain almost unaltered. At 50% the Fourier signal
appears blurred while the two others are still surprisingly good. At a reduction to
5% cosine and Haar spectra show just the strongest edges. The Fourier spectrum
is a mixture of high-level and low-level information. That is, the FT still tries
to represent the entire signal while the two other transforms focus on significant
intensity changes (edges).

Why is that? Since the application is the same, the difference must lie in
the kernels used for Fourier transform and cosine transform.2 The following
equations show the real FT kernel and CT the kernel (simplified).

kRFT (x, y) = cos(xy)

kDCT (x, y) = cos
(
xy +

y

2

)
Adding an additional y

2 to the waveforms increases their frequency in the
DCT more rapidly (over-linearly) than in the FT. As a result, the DCT collects
all low-frequency information (strong edges) in the first (lowest) coefficients.
Higher coefficients represent just minor changes. The spectrum of a DCT is

2The performance of the Haar wavelet will be explained in the next section.
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Fourier Cosine Haar

5%

10%

50%

90%

99%

Figure 12.3: Fourier, Cosine and Haar Wavelet Approximation Example for
Decreasing Spectrum Size ( c© CNBC ).
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not linearly organized as a FT spectrum. This transform causes decorrelation
between the frequencies by aggregating the fundamental information in just a
few coefficients. Therefore, the cosine transformation is tailor-made for data
reduction by decorrelation and, of course, the imitation of visual perception.
Before the introduction of wavelets, CT was heavily employed in image and
video compression. All these effects are caused by the additional term for the
frequency iterator y.

Before we conclude, we have to mention the Z transform which is – like the
Laplace transform – a superclass of the Fourier transform. Here, the kernel is
defined as k(x, z) = z−x and z is typically defined by an expression with one
free parameter a. For example, if z = eia we arrive at the Fourier transform.
Particular forms of the Z transform are, for example, employed in biosignal
analysis.

In conclusion, Fourier transform and cosine transform are two practically
highly relevant discrete transforms that employ continuous base functions. The
major difference is that Fourier transform creates a linearly distributed spectrum
while cosine transform decorrelates the input signal.

However, the usage of unlimited bases causes problems if time-limited signals
(e.g. windows of samples) should be transformed (e.g. artifacts at the ends of the
window). Since the 1950ies scientists have developed solutions for this problem.
The next section introduces the most important ones.

12.3 Transforms with Limited Bases

The development path to the wavelet transform of today went from the Fourier
transform over the short-time FT and the Gabor transform to the Haar wavelet.
The latter came into existence before its two predecessors but was first not
recognized in its full potential. Below, we discuss the milestones along this path
and introduce major wavelet functions.

The short-time Fourier transform simply wights the sine base with a win-
dowing function before the application on the input signal. Frequently used
windowing functions are the rectangular function, the Gaussian function or its
close relative, the Hamming function. Such functions will be discussed in Chap-
ter 14. The kernel weighting operation for windowing function w(x) is performed
as:

k̄(x, y) = k(x, y).w(x) (12.11)

In the 1950ies, Gabor integrated a Gaussian waveform with a Hamming
windowing functions, such introducing the Gabor wavelet transform. The bottom
signal in Figure 12.4 shows a Gabor wavelet. In total, the Gabor kernel has seven
parameters, where the simplest parametrization takes the following form:
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k(x, y) = e−
x2+y2

2 . cos(2πx) (12.12)

Applied like a continuous base by positive convolution, the Gabor wavelet
was the last step before the development of the wavelet transform (WT) with
varying base function (mother wavelet).

The wavelet transform is distinguished from the standard model of the dis-
crete transform in several points:

• The elements of the base k are time-limited.

• All elements of k are derived from the same mother wavelet and adapted
in scale and location.

• The application by positive convolution is embedded in a recursive algo-
rithm.

The major step in wavelet application is the derivation of a base. The adap-
tation of the mother function takes the following form:

ks,l(x) = 2−
s
2φ(2−sx− l) (12.13)

Here, ks,l(x) is the base at scale s and location l. Scales are iterated in
multiples of two. The final base consists of linearly independent components.
The function φ(x) is the mother wavelet. The major difference between this
type of base and the Fourier base is that the frequency domain does not use
the same iterator as the time domain. Instead, scale and location span a two-
dimensional spectrum of wavelet coefficients. The coefficients are computed by
positive convolution.

os(s, l) = 〈ks,l(x), o(x)〉 (12.14)

This operation is performed for all relevant scales and locations. The back
transformation is almost symmetric to the transformation – of course, it has to
iterate over the two-dimensional space. Since the size of the space s, l is not
necessarily (and mostly, is not) large enough to cover the entire input signal,
pyramidal coding is employed to create a spectrum big enough for full back
transformation.

Figures 12.4 and 12.5 show the most important mother wavelets. Each
mother wavelet is a balanced function, i.e.

∑
φ(x) = 0. The first figure summa-

rizes smooth functions that can be used to compute wavelet spectra of smooth
signals. The first derivate of the Gaussian function may as well be used to model
(soft) edges. The mexican hat function is most sensitive to points (e.g. image
pixels, audio peaks). The Meyer wavelet and the Morlet wavelet are very similar
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to the Gabor function. The major difference is the frequency of the signal. That
is, the Gabor wavelet should perform better on high-frequency information while
the Meyer wavelet should be superior for low-frequency information. Of course,
the scaling parameter s gives these differences a mostly theoretical relevance.

Gaussian 1st Derivate

Mexican Hat

Meyer Wavelet

Morlet Wavelet

Gabor Basis Function

Figure 12.4: Gaussian Mother Wavelets.

The mother wavelets in Figure 12.5 are ideal for edgy signals. The first signal
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is the Haar wavelet that was used in Figure 12.3 for wavelet transformation. As
we saw, it is very effective for the representation of edges. The second wavelet
is an edgy mexican hat that can be employed to represent signals with many
isolated peaks (e.g. stock data). This wavelet and the depicted Daubechies
wavelet are members of entire families of wavelets. There application lies in
spectral transformation of visual and sensor data.

Haar Wavelet

Coiflet No. 1

Daubechies No. 2

Figure 12.5: Edgy Mother Wavelets.

The actual computation of a wavelet spectrum is fundamentally different
than for discrete transforms. Since the base signals are time-limited it is not
sufficient to extend the positive convolution over the entire signal and base.
Furthermore, the space spanned by scales and locations is normally not as big
as the space of the input signal. Therefore, a flexible algorithm is required that
creates a spectrum of sufficient size that represents the entire input signal. The
solution is a (recursive) pyramidal algorithm. Since this algorithm performs the
wavelet transform at multiple resolutions, it is also known as multi-resolution
analysis. The algorithm performs the following steps:

o := get_input_signal()
k := compute_base(mother_wavelet)
o_s := 0
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do
x := high_pass_filter(o)
o_s := concat(o_s,wt(x,k))

y := low_pass_filter(o)
o := downscale(y)

while smooth(o) = TRUE

In each iteration, the input signal o is split into low-frequency and high-
frequency components, which are fed into the wavelet transform. The resulting
spectrum is added to the entire spectrum o s. The low-frequency components are
reduced in size thus creating new high-frequency components. The entire process
is repeated until no information is left in the input signal. The execution time
of this algorithm depends on the size of the wavelet base k and the complexity
of the input signal. Since the function compute base can pre-compute a static
matrix of wavelet coefficients, the execution is faster, if the base is larger.

Practically, the algorithm becomes more complex for n-dimensional data. For
example, images (two-dimensional) are transformed and scaled down along the
lines, columns and both dimensions. That is, on every scale three spectra are
computed that are added to the entire spectrum. See the rightmost elements of
Figure 13.7 for an example.

The wavelet transform based on mother wavelets and implemented by a pyra-
midal algorithm has several advantages over total positive convolution.

• The mother wavelet can be chosen as required by the properties of the input
signal. The resulting spectrum is optimal for the intended application.

• The base is applied on as many scales and in as many locations as required.
This enables localization as well as economic utilization of computing re-
sources (high performance).

• The pyramidal algorithm creates a scale space which is an important com-
ponent of many media understanding algorithms – in particular for local
feature transformations.

The last bullet requires a comment. In recent years wavelet bases have been
developed that are very similar to edge operators and point operators (see Chap-
ter 14). The combination of such wavelets with multi-resolution analysis becomes
more and more similar to the application of edge operators on scale spaces. We
will investigate this issue further in the chapter on local feature transformations.

Before we conclude this section we would like to mention two types of trans-
forms that are with minor differences very similar to wavelet transforms. The
first group are transforms based on polynomials. The second are non-separable
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wavelets. Both groups employ bases that are more complex than wavelets de-
rived from a mother function. Hence, these methods may be seen as a link from
the domain of wavelet transforms to the domain of template-based matching.

Z00 Z−22 Z−33 Z33 Z04 Z55 Z−15

Z11 Z02 Z13 Z−44 Z24 Z35 Z−35

Z−11 Z22 Z−13 Z−24 Z44 Z15 Z−55

Figure 12.6: Zernike Polynomials Base Functions. This image was created using
the algorithm of Claudio Rocchini provided at [309].

Figures 12.6 and 12.7 show two-dimensional polynomial bases. The first are
the Zernike polynomials, developed by Zernike for the representation of typical
lense defects. Applied by the inner product, the definition of the base can be
expressed by the following formula.

km,n(x, y) = cos(my)

n−m
2∑

z=0

(n− z)!(−1)z

z!(n+m
2 − z)!(n−m2 − z)!

xn−2z (12.15)

For n − m mod 2 = 1, km,n(x, y) = 0. Please note that x, y are polar
coordinates here. The Angular Radial Transform (ART) depicted in Figure 12.7
generates a base similar to the Zernike polynomials. The ART base is defined
as follows:

km,n(x, y) =
eimy

2π
cos(πnx)(2− δn) (12.16)

Again, x, y are polar coordinates, δn is the Dirac delta function which the
peak at n = 0. Both polynomials allow the derivation of an infinite number of
base elements. In practical application, the first 16 to 64 elements are normally
used.

Zernike polynomials and ART are two-dimensional by nature. It is, therefore,
not surprising that both transforms are employed in visual media understanding
for object representation. The ART, for example, is employed in the MPEG-7
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Figure 12.7: Angular Radial Transform Base Functions.

region-based shape descriptor. Both transforms perform well on circular self-
similar objects (e.g. faces), because then the similarity between the input data
and certain bases is maximal. Hence their application in object description.

Figure 12.8 shows a few examples for one-dimensional polynomials. Others
do exist, like the Hahn polynomials or the Meixner polynomials, a generalization
of the Kravchuk polynomials. The figure shows only the second and third order
elements. As can be seen, the polynomials are continuous but more complex than
trigonometric bases. They may be usable for the transformation of data sources
with the same properties. One possible application could be the representation
of smoothed stock data, another the representation of biosignals. Unfortunately,
the potentials of such polynomials has hardly been exploited in media under-
standing research so far. One exception is the usage of Chebyshev polynomials
for image fusion where images are merged by their Chebyshev spectra.

The second class of relatives of wavelets to be mentioned here are non-
separable wavelet transforms. Such methods are almost exclusively employed
on image data today. In this domain, separable wavelets are able to represent
point features of the input data well. However, wavelets fail in the optimal repre-
sentation of media features that are correlated over two dimensions. The reason
is the separability property. All dimensions are treated in the same way, i.e.
correlation is not considered.

Three examples of non-separable wavelet bases are ridgelets, curvelets and
contourlets. Ridgelets, as defined in [46], define a base as follows:

km,n,a(x, y) =
φ(x cos a+y sin a−n

m )
√
m

(12.17)

Here, a is the angle of rotation, φ is some wavelet function and m,n are
scaling parameters. The result is a base with properties very similar to the
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Chebyshev

Legendre

Kravchuk (m constant)

am,0(x) = 1, am,1(x) = m− 2x, am,n(x) = −2xam,n−1 +
(
m
n−1

)

an(x) = 1
2nn!

dn

dxn (x2 − 1)n

a0(x) = 1, a1(x) = x, an+1(x) = 2xan(x)− an−1(x)

Figure 12.8: Chebychev, Legendre and Kravchuk Polynomials.

two-dimensional polynomials defined above. Similarly, the curvelet approach
applies a wavelet on certain sectors of the input data thus emphasizing circular
properties in the data. Eventually, the contourlet approach defines an entire
scale space for the application of a to be chosen wavelet function.

In summary, wavelets are due to their flexibility (derivation from mother
functions, pyramidal coding) state-of-the-art in many media domains. For media
understanding, they provide spectra that represent the input data efficiently by
a small number of coefficients. As a general rule, the best wavelet transform is
the one with the mother function that is most similar to the input signal.

Most wavelet transforms guarantee a back transformation. Sometimes, how-
ever, something else is desired, for example, rotation-invariant representation of
the input data. Then, parametric transforms are the methods of choice.

12.4 Parametric Transforms

We have selected a pair of transforms that are highly important in visual me-
dia understanding. The Radon transform and the Hough transform are both
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parametric transforms in the sense that they populate a space and the topology
depends on the parametrization of the transform (parameter space).

Projection axis

Figure 12.9: The Radon Transformation ( c© CNBC ).

A0

Figure 12.10: Radon Transformation Example (black=zero, c© CNBC ).

The principle of the Radon transform is depicted in Figure 12.9. Major
element is a projection axis fixed in the image center that rotates and summarizes
in every location the intensities of the input media object perpendicular to the
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location. The result is one vector per angle. Typically, the Radon transform is
performed for all discrete angles in the interval [0, π].

Figure 12.10 shows the spectra for four different rotations of the same source.
As can be seen, the two pairs of 180 degree rotations have the equal spectra. A
closer look reveals that the spectra of the pairs are also the same – just shifted
by 90 positions. If all spectra were shifted until the globally maximal coefficient
is in the first position, all spectra would be equal. That is, the Radon transform
creates a rotation-invariant spectrum of the input data.

Figure 12.11: The Hough Transformation ( c© CNBC ).

The Hough transformation implements a completely different idea but comes
to a result very similar to the one of the Radon transform. Figure 12.11 illustrates
the principle. For each sample of the input media object, the gradient (direction
and magnitude) is computed. The gradient is the direction of maximal ascent.
The computation can, for example be performed by an edge operator or by local
neighborhood comparison. See the next chapters for more on this topic. In the
second step, an accumulator for direction and offset (the gradient is a vector) is
incremented. This process is repeated over all samples.

Figure 12.12: Hough Transformation Example ( c© CNBC ).
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The result, as can be seen in Figure 12.12, is an abstract representation that
is – like the Radon spectrum – invariant against rotation. Often, the Hough
transform is not applied on the image data directly but on an edge map of the
image. the result is the same spectrum, but with fewer elements and smaller
peaks.

The Radon transform was developed for the elimination of the influence
of rotations. The Hough transform, in the contrary, was developed as an im-
age feature transformation. Rotation invariance is just a side-effect. However,
today both parametric transforms are employed for achieving rotation invari-
ance. Some authors even argue that they are equivalent, a point of view we
cannot share, because their spectra are obviously different in morphology and
magnitude. The common drawback of the two transforms is their bad perfor-
mance. Therefore, alternative methods have been developed for the achievement
of partial rotation invariance. Such methods will be discussed in the subsequent
chapters.

In conclusion to this chapter, transforms are an essential element of many
feature transformations in media understanding. Spectral representation reduces
the negative effect of the gravity of the sample, i.e. the semantic gap becomes
smaller. On the other hand, all transforms require significant computation effort,
i.e. have a negative effect on the performance. All transforms introduced in this
chapter are primarily intended for the interpretation of media data, though some
also serve as decorrelation functions (e.g. the cosine transform).

In the next chapter, we see how important discrete transforms are for me-
dia understanding. We introduce spectral feature transformations for audio,
biosignal, image, stock and video data.



Chapter 13

Spectral Descriptions

Explains the application of discrete transformations for the description of audio
and biosignals, discusses the methods employed on visual data and derives a set
of methods for the spectral description of stock data.

13.1 Audio Feature Transformations

In contrast to the last chapter, this one introduces practical feature transforma-
tions that employ discrete transforms. This chapter continues Chapter 4 from
the first part. Like that chapter, this one is organized along the media types. In
this section we focus on audio. The next one explains the spectral feature trans-
formations employed on biosignals. Non-surprisingly, those are often similar to
the methods employed on audio. The two remaining sections focus on visual
material and stock data. The latter domain has hardly seen the application of
discrete transforms so far – without good justification, as we think.

The audio section is structured along the four major dimensions of sound
perception introduced in the first part. These are loudness, pitch, rhythm and
timbre. In particular the two latter dimensions can most efficiently be described
by spectral transformations. However, before we dive into the pool of features,
three pre-requisites should be discussed:

• Spectral aspects of human hearing

• Critical bands and the Barkhausen scale

• Smoothing of spectral windows

241
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Figure 13.1: Hearing: Cochlea, Hair Cell, Tip Link.

Figure 13.1 shows a conceptual view of the inner ear. Audio waves enter
the human ear, are modulated in the auditory canal, propagated by the basilar
membrane, malleus and incus. Eventually, the stapes converts the kinetic energy
to movement in the fluid that fills the cochlea (left part of the figure). From the
base to the apex, the cochlea is punctuated with hair cells (in summary called
the organ of Corti). The movement of the fluid causes movement of the hairs
on the hair cells. At the base, very short hairs are located which are sensitive
to high frequencies. At the apex, the longest hairs can be found, which are best
set into motion by fluid movement with low frequencies. At first, it may appear
surprising that the longest cells are in the apex of the cochlea spiral. The reason
is simply that low frequency movement has higher energy and is, therefore, not
prematurely absorbed in the organ.

The hair cell provides the mechanism that converts fluid movement into
electrical stimulation of the attached nerve. The right part of Figure 13.1 shows
the trick. Every hair cell has a number of hairs which are linked by tip links.
The hairs may be seen as tubes of which the covers are opened by hair movement
through the tip links. When open, potassium ions can enter the cell from the
cochlea fluid. Potassium (K) is a highly reactive alkali metal. When in, the
ions cause a depolarization of the cell. In consequence, electric gates at the base
of the cell are opened and calcium ions can enter the cell body. The calcium
triggers the neurotransmitters at the synapses of the nerve cell which, in return,
create a signal in the auditory nerve.

The aspect of this process most remarkable for us is its similarity to the
Fourier transform. The hair cells which are ordered in the cochlea by decreasing
size and the spiral form of this organ have the same effect as convolution by
trigonometric functions has. Specific frequencies are mapped on specific fibres
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of the auditory nerve or specific coefficients, respectively. That is, the Fourier
transform is a mathematical model of the cochlea organ which is another justi-
fication for using this transform in the audio domain.

Frequency (kHz)

Critical Bandwidth (Bark)

15500

24 CB = 13 arctan(0.00676F ) + 3.5 arctan

((
F

7500

)2
)

Figure 13.2: Barkhausen Scale with Logarithmic Frequency Scale.

The second prerequisite is related to the first. The Barkhausen scale (short:
bark) depicted in Figure 13.2 lists the 25 so-called critical bands of hearing. The
term refers to the groups of hair cells in the cochlea. The length of the hairs does
not decrease linearly but in steps from base to apex. Psychophysical experiments
have revealed that within groups of (almost) equal size masking effects occur.
That is, of two simultaneous sound of similar frequency, only the one with the
higher energy (loudness) is perceived, the other is dropped (masked). Masking
effects hardly occur between groups. Due to this property, each such group of
hair cells is called a critical band. A critical band is equivalent to a frequency
band, i.e. a group of coefficients, of the Fourier transform. Now, the bark scale
gives every critical band of human hearing a number from 0 to 24. The equation
given in the figure is an approximation. Please note that the frequency scale
is logarithmic. That is, the higher the frequency the longer the band and the
more similar sounds may be subject to masking. Since masking is an important
feature of human hearing, the bark scale is employed in many important spectral
audio feature transformations.

The last prerequisite to be mentioned here is a localization issue. As men-
tioned in the last chapter, the discrete Fourier transform is just an approximation
of the continuous definition which goes from negative to positive infinity. Fea-
ture transformations, however, operate on small windows of samples. Applying a
Fourier transform (or a related transform) on a small window of samples creates
artifacts at the borders of that window. Depending on window size and signal
content the artifacts may become a significant noise component. The traditional
remedy against such artifacts is window smoothing which, practically, means
down-weighting the borders of the spectrum. Typically, a Hamming function
(similar to the Gaussian function) is laid over the spectrum in order to minimize
the artifacts. See the next chapter for more details on window smoothing.
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Music

Speech

Figure 13.3: Fourier Spectra of Music (top) and Speech (bottom).

For the present chapter we have decided not to smooth the spectra. The nat-
ural state of signal and spectrum should, as we hope, support the understanding
of the employed methods. Figure 13.3 illustrates the signals and Fourier spectra
of the two example audio signals introduced in the first part. As can be seen, the
music signal is composed of a few low-frequency bins and a few high-frequency
bins. Mid-frequency components hardly occur. The speech signal is similar but
a bit more diverse. Knowing that speech is generated in a much simpler way
than music, how can that be? The reasons are two-fold. First of all, the de-
picted music signal shows the same number of samples as the speech signal, but
the peak frequency of the spoken word lies around 8000Hz while a music signal
can go up 20000Hz. Since the number of samples and the frequency are bound
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together by the Nyquist law (see first part), the higher frequencies of the mu-
sic signal cannot be represented in this toy example. The second reason is the
missing window smoothing. The initial artifacts distort the spectra.

Hence, this is the realistic starting point for spectral audio description. The
question now is: What can we practically do to get a grip on the loudness, pitch,
rhythm and timbre if the signal has these characteristics? The remainder of this
section gives an answer on this question.

In the first part, we introduced short-time energy as a widely used loudness
feature. Indeed are Time-based features are indeed ideally suited for the repre-
sentation of loudness. The benefit of spectral features in this domain lies mostly
in the straightforward band filtering. Arguably the most relevant loudness fea-
ture transformation in the spectral domain is the Sone Feature (SF). It employs
bark scale band filtering and the sone transformation (see Chapter 4 in the first
part). The feature transformation consists of the following steps:

1. Localization of the media source by windowing. The window size depends
on the type of media and the application. For example, for speech recog-
nition 20ms may be suitable while audio genre classification may require
500ms windows.

2. Fourier transformation of each window. The first and the second step can
be performed together in the short-time Fourier transform (STFT).

3. Separation of the critical bands in the spectra. For each critical band:

(a) Back transformation of the band-limited spectrum into the time do-
main.

(b) Application of the sone transformation on the amplitudes.

4. Aggregation of a description from windows and bands per window. If
necessary, information filtering by coarse representation or factor analysis.

The algorithm makes clear that SF is an enhanced short-time energy that ex-
ploits our knowledge about critical bands and about the perception of loudness.
One detail in the computation that sometimes causes confusion is how frequen-
cies (e.g. in the bark scale) are mapped on spectral coefficients. In the case of
the real Fourier transform, for example, the spectral coefficients are the result of
convolution by the kernel cos(yx). Since y is the indicator of the coefficient, x is
the only free variable which allows for interpreting it as the positional parameter
in the cosine function. Then, y determines the frequency of the employed cosine
wave and corresponds directly to the frequency requested by the transformation.
In short, the indicator of the coefficient is mapped on the frequency directly.

Pitch computation – where the zero crossings rate is employed in the time
domain – has the honor of being operationalized by the probably most famous
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Figure 13.4: Computation of Mel Frequency Cepstral Coefficients.

audio descriptor, the Mel Frequency Cepstral Coefficients (MFCC). Since they
are so important in audio understanding, their computation is not just explained
in the text but also illustrated in Figure 13.4. The MFCC use the majority of
important building blocks to summarize an audio signal. In particular, the fol-
lowing steps are taken. First come localization and spectral interpretation by
the STFT. On the spectrum, the mel scale is applied (sometimes replaced or
augmented by the logarithm). This operation brings the psychology of hearing
into the MFCC. In the last step, the cosine transform is employed for decorre-
lation of the coefficients. The result is called a cepstrum (reversed spec-trum).
The reason may be that in some forms of the MFCC the cosine transform is re-
placed by the inverse Fourier transform – though this transform has a completely
different effect.

Only the first n coefficients of the cepstrum are used as description of an
audio window. It has to be noted that MFCC is just a summarizing feature
transformation. Interpretation is only performed by spectral representation but
not by autocorrelation. Hence, MFCC represent the information in the input
media – and that very efficiently due to the cosine transform. However, MFCC
do not reflect the signal like a predictive coding transformation would. Still,
MFCC are state-of-the-art not just for pitch representation but also for many
applications, most noteworthy speech recognition. The practitioner will, when-
ever working on a new audio understanding problem, take MFCC into the mix
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of audio features. Factor analysis shows that MFCC come very close to being
an orthogonal base of the input data. This is because of the CT.

In loudness and pitch detection, SF and MFCC are hardly disputed (though
many other interesting feature transformations do exist, see [268]). For rhythm
detection, however, a number of feature transformations do exist that are closely
related. Of these we would like to mention the spectral flux and two forms of
perceptual linear prediction. Other interesting approaches such as the beat
histogram and the cyclic beat spectrogram are described in [268].

All spectral rhythm feature transformations discussed here start with the
STFT and employ some form of autocorrelation (mostly by negative convolu-
tion). The spectral flux simply performs negative autocorrelation on the spectra
of neighboring windows. The windows are typically of fixed size. In consequence,
small description elements indicate a rhythm component in the respective fre-
quency band. The larger the spectral flux values, the less rhythmic the source.
Of course, spectral flux can also be used to measure pitch as the fundamen-
tal frequency. Then, the first description elements have to be used, since these
represent differences in the lowest frequencies.

Perceptual linear prediction (PLP) implements a plan similar to time-based
linear prediction. In detail, the following steps are performed:

1. Perform the short-time Fourier transform for reasonable window sizes.

2. For every critical band, perform psychoacoustic weighting by the mel scale
or the logarithm.

3. Perform the cosine transform for decorrelation.

4. Eventually, do autocorrelation by negative convolution.

That is, PLP is highly similar to linear predictive coding (LPC). The major
differences are the introduction of psychophysical weighting and of decorrelation
by the cosine transform. It appears justified to conclude that here, the success
factors of MFCC were applied on LPC. The PLP variant RASTA-PLP adds
another logarithmization before the mel scaling which is reversed by applying
the exponential function before the cosine transform. The effect is a stronger
influence of the mel scaling. Factor analysis shows that the two variants are
highly similar. Therefore, we prefer using PLP for rhythm detection.

For loudness, pitch and rhythm detection we have encountered strong fea-
ture transformations both in the time domain and in the spectral domain. The
same is not true for the description of timbre. Here, spectral descriptions are the
state-of-the-art. Three representatives for a large set of descriptions are bright-
ness, sharpness and bandwidth of a timbre. Brightness can be measured by the
weighted spectral mean, for example, µ(log(os)). The logarithm decorrelates the
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coefficients of an STFT spectrum os. The mean will be small if a sound is dark
(few low frequencies) or large if it is bright (many high frequencies). Sharp-
ness is often measured as µ(w.os) where w is a weight vector that is sensitive
to large differences between neighboring coefficients. Eventually, the bandwidth
(richness) of a timbre can be described by σ(os), the standard deviation of the
coefficients. The higher this value, the richer the timbre.

There are dozens of other audio feature transformations that can be employed
for audio description. For example, the chromagram is similar to MFCC but
employs Fourier transform instead of cosine transform, the logarithm instead
of mel scaling and summarization instead of averaging. The MPEG-7 standard
defines a number of descriptors for rhythm detection and timbre description. We
would like to refer the curious reader to [268] for an excellent survey of many
audio feature transformations. The most important ones, though, have been
described above.

In particular, MFCC can be employed on almost any problem and where they
fail, PLP can be used. In combination with spectral flux, some timbre features
and the before-mentioned time-based descriptions each category of audio can be
represented by an expressive description vector. In the next section, we will see
if the biosignal domain employs similar methods.

13.2 Biosignal Feature Transformations

The content of this section is bound to the time-based feature transformations
discussed in the first part and to the preceding section. We investigate oppor-
tunities for the application of spectral transformations in the biosignal domain.
First, we introduce an important information filtering scheme which is a nec-
essary prerequisite in this domain due to the very noisy input data. Then, we
discuss areas of applications for the fundamental transforms, mainly Fourier
transform and wavelet transform. Eventually, we go through the list of applica-
tions stated in the first part and suggest adequate spectral features.

Advanced information filtering is the topic of Chapter 16. Nevertheless, the
biosignal domain requires an exception. Below, we introduce the cross-spectral
density as a source separation tool, because – as we explained in the first part –
biosignals have an exceptionally bad signal-noise ratio. The simple reason is that
one electrode responds to hundreds of thousands simultaneous nervous impulses.
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Figure 13.5: Spectra of Biosignals (EEG and ECG).



250 CHAPTER 13. SPECTRAL DESCRIPTIONS

The cross-spectral density (CSD) builds a spectrum from two input signals
o1, o2. In the biosignal domain, the first source may be the ECG while the
second is typically the respiration. Respiration is a noise signal in this setting
that overlays the interesting signal, the ECG. The task of CSD is to indicate
where (at which frequencies) the noise signal influences the other signal. The
CSD χ and the related coherence ρ are defined as follows.

χo1,o2(y) =
N−1∑
x=0

wx.rox,oy (x).k(x, y) (13.1)

ρo1,o2(y) =
χo1,o2(y)2

χo1,o1(y).χo2,o2(y)
(13.2)

Here, rox,oy is the back-transformed covariance of the Fourier spectra of the
signals ox,oy, i.e. a measure for their linear dependence. The wx are weights
from a window smoothing function (e.g. Hamming window) and k(x, y) is the
Fourier base. That is, the CSD coefficients are high only where both signals
are significant, i.e. where a linear influence of the noise signal exists. Those
frequency bands can, for example, be smoothed or the noise can be modeled by
an appropriate density function and subtracted from the signal.

Figure 13.5 shows the Fourier spectra for some types of biosignals (without
smoothing). As can be seen, the EEG α wave can be described by few coefficients
which is not surprising since this wave is defined as being similar to sine waves.
In comparison, the EEG β wave generates a significantly more complex spectrum
and even the repetitive ECG signal employs more coefficients. Since it is one
application of feature transformation of biosignals to distinguish fundamental
types of waves, the Fourier spectrum is already a valuable description. For the
sake of compactness it can be reduced by statistical aggregation (moments). For
example, high variance of the spectral coefficients indicates rather an EEG α
wave (subject is resting) than a β wave (subject is active).

Generally, the Fourier spectrum is useful in biosignal understanding where
signals are quasi-periodic and smooth. That is, it describes α waves well, while
for periodic, but not smooth signals the spectrum becomes unnecessarily com-
plex. For example, the ECG given in the figure can better be described by
a wavelet (see below). Simple biosignal descriptions drawn directly from the
Fourier spectrum include the dominant frequency (maximum of coefficients),
absolute and relative importance of frequency bands (averaged groups of coef-
ficients) and the size of the 10-90% band that covers 80% of the input signal.
Furthermore, the periodogram is a simple transformation of the Fourier spec-
trum, where every coefficient is taken to the power of two and divided by the
number of samples. The periodogram is suitable for distinguishing random sig-
nals (uniform distribution of the coefficients) from characteristic signals.
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We see that all these feature transformations are significantly less sophisti-
cated than what is applied in the audio domain. However, one transformation of
similar design is the spectrogram. The spectrogram is computed in the following
steps.

1. Short-time Fourier transformation of the input signal

2. Computation of the short-time energy for each window

That is, the spectrogram is high, if the absolute energy in the spectrum is
high. The resulting description is similar to the sone feature, though, of course,
no psychophysical transformation is employed here. Sometimes, the spectrogram
is also computed from wavelets, in particular, Morlet and mexican hat mother
wavelets.

As already mentioned, wavelets are used in biosignal understanding for the
description of edgy rhythmic patterns (pulses, for example). Such signals are
frequently called spike wave complexes. The ECG is a typical example. For such
waveforms standard mother functions can be employed but it is also tempting to
define a pattern tailor-made for the signal of interest (e.g. an ideal ECG pulse).
Transforming the input signal by a base derived from such a mother function
reduces the analysis of the spectrum to the investigation of non-uniform coeffi-
cients. From the global media understanding perspective, this proceeding goes
even further into the direction of template matching than ordinary wavelet trans-
formation. The technology is the same, therefore, the labeling of the method is
a question of taste.

The last general transform to mention here is the Z transform, which is rela-
tively popular in biosignal analysis. The application is typically in the simplest
form, where the resulting coefficients are used as a description directly. Another
application is the computation of a spectrum for further analysis by filtering.
The Z spectrum is generally interesting for non-smooth non-periodic signals (e.g
EEG β waves), but even for these signals some wavelets perform superior.

In the remainder of this section we discuss solutions for specific biosignal un-
derstanding problems. Where necessary, we will not just employ the fundamen-
tal methods from above but also suggest suitable audio feature transformations.
The list of applications is the same as in the first part of this textbook.

One major problem of biosignal understanding is the detection of steady-
state visual evoked potentials. That includes the detection of amplitude peaks
that correspond to sudden brain activity caused by an unusual visual stimulus.
Since the EEG peak occurs usually around 300ms after the presentation of the
stimulus the problem is also called P300 detection. Traditionally, this problem
is approached by wavelet transformation and mother functions that resemble
such peaks. Frequently used base functions are the mexican hat wavelet and the
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Meyer wavelet. The second is superior for noisy data (more high frequency com-
ponents). Alternatively, it may be interesting to investigate the cosine spectrum
of such a signal which should represent P300 events (that are similar to edges)
well.

K complexes which indicate non-REM sleep are distinguished in the EEG by
a positive signal peak followed by a negative peak. This type of signal resembles
the first derivate of the Gaussian function. Therefore, a wavelet transform with
this base is the feature transformation of choice. Interestingly, the literature
also suggests using the Meyer wavelet, but we believe that the Gaussian base (if
not a Haar wavelet) would create the optimal response in the spectrum. The
description could be the first n maxima of the spectrum.

The next domain are slow cortical potentials, which express the excitability
of brain areas. Technically, they are represented by a low-frequency wave overlay
over the EEG wave. In order to identify such waves, a Fourier periodogram with
large window sizes can be employed. In a second step – similar to MFCC – the
cosine transform can be used for the elimination of all non-fundamental spectral
components.

The detection of (the absence of) changes of oscillatory activity (COA) is
important for the detection of epilepsy. COA are sudden changes in frequency
and/or amplitude of a signal. One temporal method for COA description would
be the amplitude descriptor introduced in the first part. In the spectral domain,
smooth wavelets are well-suited for representation. The frequently used Morlet
wavelet could also be substituted by the Gabor wavelet. The description could
be constructed from windowed energy values, i.e. a spectrogram. Furthermore,
autocorrelation in the form of PLP (without the psychophysical step, of course)
could also indicate breaks in the rhythm of the signal.

Eventually, the detection of real or virtual motor activity is a question of
the distinction of β waves from γ waves. These two EEG signals have very
similar characteristics but a fundamentally different bandwidth. The maximum
frequency of β waves lies around 30Hz while γ waves have up to 100Hz. There-
fore, the feature transformation of choice is MFCC without mel scaling. This
transformation models the fundamental frequency (pitch) which is exactly the
criterion of interest here.

In conclusion, we see that the traditional spectral biosignal feature transfor-
mations are intended for semi-automatic content understanding. The spectra
are visualized and the categorization is left to the expert user. However, most
application problems can be automated, for example, by the methods introduced
above. In contrast to the time domain, audio features cannot be mapped directly
on the biosignal domain. Manipulations motivated by psychoacoustics have to
be removed from the recipes. Then way, potent descriptions can be generated
that can be made subject to computational categorization.
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13.3 Visual Feature Transformations

This section has the same organization as Chapter 5 in the first part. First,
we deal with color and texture descriptions and then with shape representation.
Feature extraction in the visual domain has to take two major differences into
account. Signals are two-dimensional and the main source of information is
compacted in edges, not distributed over the entire signal. Therefore, different
operations are employed for spectral representation.

Signal

Figure 13.6: Fourier Spectrum of an Image Signal.

Figure 13.6 shows that the Fourier transform does not generate a very in-
formative spectrum for visual information. The signal is the line of the leading
example, that goes through the nose tip of the anchorman. The information,
down-weighted by artifacts at beginning and end, is distributed over two thirds
of the coefficients. The spectrum says, that the signal is a composition of low and
high frequencies but the edge information cannot be seen in the data anymore.

What we require is a representation of the contrast in a visual object. In the
last chapter we pointed out that the cosine transform provides such a description.
Figure 13.7 gives an example. The left column shows the source objects, the
middle column their cosine spectrum and the right a wavelet decomposition. If
we look at the cosine spectrum first, we see that the spectrum of the original
image looks frighteningly close to white noise though on small scale structures are
visible. Comparing the original image to the canny edge map, however, shows
the value of the cosine spectrum. The spectrum of the edge map is mostly
black (zero information) and only the first columns and the first rows contain
information. Since the map contains only the edge information of the original
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Figure 13.7: Cosine Spectrum (middle) and Wavelet Decomposition (right) of
an Image and an Edge Map ( c© CNBC ).

visual information we can conclude that these spectral bins represent the edge
information. That is, the cosine transform distills the edge information into the
first coefficients.

The Haar wavelet decomposition is given as an example for object represen-
tation. We can see that – in contrast to the cosine transform – object contours
are preserved in the image pyramid that develops towards the upper left corner.
As we explained in multi-resolution analysis, the smaller the representation the
lower the represented frequencies. The object contours remain visible in the
decomposition process because wavelets use limited bases that are transformed
to particular scales and, most importantly, positioned at particular locations.
Therefore, wavelets appear to provide the ideal spectra for shape representa-
tion.

The color domain does not seem to be an area of application for spectral
feature transformation that operate on gray-scaled data and, indeed, only few
spectral color descriptions have been defined. One exception is the MPEG-7
Color Layout Descriptor (CLD) that was already mentioned in the first part
of this book. Figure 13.8 shows the extraction process. In the first step, the
source object is localized into 64 blocks. The size of the blocks varies depending
on the size of the source. In the second step, windows are represented in the
YCbCr color model and for each channel (luminance, contrast signals to blue
and red) the mean color is computed. Then, for each of the three channels a
cosine transform is computed and transformed into a description vector by the
illustrated zigzag scan. The result is a description that is half way between color
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Source 8x8 Windowing

YCbCr Average ColorCT and Zigzag Scan

Figure 13.8: MPEG-7 Color Layout Descriptor Computation ( c© CNBC ).

and texture descriptions. The majority of information is contained in the first
coefficient of the luminance spectrum, which is a texture measure. The remaining
coefficients provide only relatively little variance. Still, CLD is an interesting
visual description that can be employed – like mel frequency coefficients and zero
crossings in the audio domain – to almost any visual understanding problem.

The MPEG-7 homogeneous texture descriptor (HTD) employs a two-dimen-
sional Gabor function for spectrum computation. In the second step, the spec-
trum is localized into 6x5 windows. Then, for each window, the energy (as in
short-time energy) and its standard deviation are computed. The descriptor
is an aggregation of the spectral moments supplemented by global energy and
deviation. It appears surprising that a smooth function like the Gabor func-
tion is employed for spectral representation here. As we saw above, the cosine
transform would probably be more efficient. However, HTD does not desire an
efficient representation of the visual information but a uniform representation of
texture characteristics – something very similar to the timbre in the audio do-
main. For efficient representation it is preferable to employ the first coefficients
of cosine transform instead, i.e. the CLD.

Figure 13.9 gives an example for a completely different approach to spectral
representation in the visual domain. The Euclidean distance transform (EDT)
replaces each sample of a visual object by its Euclidean distance (second-order
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Figure 13.9: Euclidean (middle) and City Block (right) Distance Transform
( c© CNBC ).

Minkowski distance) to the next edge. The result is a visual spectrum that
looks similar to a strong glow effect. In the right part of the figure we see the
same transform but computed by the city block distance (first-order Minkowski
distance). The major difference is that this approach does not respond strongly
to diagonal edges.

The EDT is typically used in media understanding as a pre-processing step
of object recognition, because it emphasizes the edge information to an extent
that creates compact objects. It may, for example, be used prior to the MPEG-7
region-based shape descriptor. This feature transformation applies the angular
radial transform (ART) introduced in the last chapter on the input object and
uses the spectral coefficients as the description. Of course, this transforma-
tion reacts strongly to compact circular objects, for example, faces. Therefore,
combining it with some pre-processing object segmentation is reasonable. Alter-
natively to the ART, the Zernike polynomials could be used which would provide
a similar spectrum. Of course, the entire zoo of contour-sensitive methods such
as various wavelets, ridgelets, contourlets, etc. could be used as well.

Before we conclude this section, we would like to add a few comments:

• What is the relevance of Radon and Hough transform? These trans-
forms are relevant, wherever rotation invariance is not guaranteed by the
method itself. For example, the spectrum of ART or Zernike polynomials
is rotation-invariant per se. For some texture features directionality is im-
portant to know. Global color descriptions abstract from the orientation
anyway. In other cases, such as global object representation by a wavelet
pyramid, it is advisable to employ a parametric transform. Furthermore,
the coefficients of the Hough transform are considered a texture description
in their own right.

• Spectral transformation is also relevant in visual motion description. In
Chapter 15 we will see that the properties of the Fourier transform make
it an option for the computation of global motion.
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• Recently, the Walsh Hadamard transform (WHT) gained attention as a
spectral transformation of edge information. For spectrum computation,
the WHT employs a simple binary base recursively. The approach is equiv-
alent to a Fourier transform applied on an n-dimensional object with binary
dimensions. That is, the visual content is interpreted as a high-dimensional
block of data. On the other hand, the approach produces results similar
to Haar multi-resolution analysis. It is therefore an interesting bridge be-
tween the Fourier domain and the wavelet domain.

In conclusion, in the first three sections we have encountered a number of
spectral feature transformations that are today employed on audiovisual and
other content. Methods of outstanding importance are the Fourier, cosine and
wavelet transform. The rest of the recipes is often very similar to the domain
of time-based feature transformations. In the last section we try to transfer
the idea of spectral feature transformation on a yet untouched domain: stock
analysis.

13.4 Spectral Description of Stock Data

Technical chart analysis has hardly seen the application of complex feature trans-
formations, in particular spectral transforms. This is unfortunate, because such
methods may be able to extract the non-random part from the fundamental
Wiener process. In consequence, spectral transformation could be a valuable
pre-processing step in stock description for prediction based on machine learn-
ing.

Figure 13.10 shows what happens if we apply the Fourier transform without
smoothing on a stock data stream. The artifacts at the borders make the spec-
trum appear almost uniformly distributed. That would mean that the signal is
very close to being random. However, the small deviations can be increased in
magnitude by window smoothing and by appropriate feature transformation.

One such method is the periodogram introduced for biosignals. If we take
the smoothed spectrum to the second (or, n-th) power we emphasize the spe-
cific characteristics covered by the noise of the Wiener process. Knowing fur-
ther that the low-frequency coefficients are more reliable in a stock signal, since
they represent those expressions of the market that are less influenced by daily
changes, recommends extracting these coefficients as description input. The
actual description could – like a chromagram – be provided by Fourier back-
transformation. This feature transformation would predict the fundamental de-
velopment of a stock like the sliding average or a set of support and resistance
lines.

Another biosignal-like approach implements the idea of the recognition of
spike wave complexes. Similar to that, primitives like rectangles, triangles,
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Figure 13.10: Fourier Spectrum of a Wiener Process.

but also more complex forms like butterflies, etc., could be modeled as wavelet
mother functions. Then, the coefficients of a wavelet decomposition could be
employed as predictive descriptions of a stock.

Generally, wavelets appear to be the ideal solution for short-time prediction
in stock analysis. The pattern could be to apply a library of incomplete wavelet
templates on the last n samples of a stock by crosscorrelation and interpret the
resulting similarity values as belief scores for the likelihood of future continuation
of a particular template. It appears reasonable to suggest negative convolution
for this type of data because stock values are genuinely integral, i.e. aggregating
multiple channels of information.

From the spectral audio toolbox, MFCC, RASTA-PLP, bandwidth and sharp-
ness could be interesting. MFCC – without mel scaling – could be employed to
model an incomplete stock (the future is missing). Such descriptions could be
compared to prototypes of past and future information by various categorization
methods. As for the other domains, MFCC capture the fundamental character-
istics of stock data well.

Linear prediction fits naturally to stock data analysis. The added value
of RASTA-PLP lies in the increase of magnitude caused by the exponential
function. This operation would increase the differences in the spectrum and
might lead to better prediction of future developments.

Eventually, bandwidth and sharpness are two timbre features that operate
directly on the Fourier spectrum. That is, they cover long-term developments
of a signal. With these characteristics, the two feature transformations could be
used in the same fashion as MFCC for comparison to prototypes of the future
that are motivated by past developments.
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In conclusion, many interesting feature transformation could be defined for
the stock domain. As always, it is recommended to try everything, apply in-
formation filtering and ground truth-based evaluation and choose the methods
that perform best. All spectral methods have in common that they reduce the
semantic gap by transforming some abstract signal into a set of weights of in-
terpretable base functions. This benefit is paid with relatively bad performance,
since spectrum computation requires considerable time and resources. It lies in
the nature of spectral features that they are employed on large chunks of data,
for example, in order to avoid border artifacts. In the next chapter, we encounter
a completely different approach to feature transformation: the description of iso-
lated but characteristic groups of samples. In this domain, spectral features are
only of minor importance.





Chapter 14

Description of Local Media
Properties

Introduces the scale space approach for windowing, point detection by Hesse ma-
trix criteria, local descriptions by gradients and the transfer of these concepts
from the visual to the other media domains.

14.1 General Localization Methods

The local feature transformation methods discussed in this chapter are not dis-
tributed uniformly over all media types. In fact, localization to the phrase,
word, etc. is trivial for symbolic media. For one-dimensional quantitative sig-
nals such as audio, biosignals and stock data the two major forms of localization
are windowing and band filtering in the spectral domain. Both approaches have
already been introduced. For example, the bark scale can be used together with
the Fourier transform for audio band filtering. It is, therefore, not surprising that
we focus on the remaining domain: vision. The first three sections of this chap-
ter deal primarily with visual media objects. This section reflects the problem
of localization in general. The next section introduces the interest point concept
for perception-like visual feature extraction. Section 14.3 explains how interest
points can be converted into proper descriptions for categorization. Eventually,
in Section 14.4 we try to transfer successful methods from the visual domain to
the other media types.

This section deals with general solutions for localization. By that we mean
approaches for localization that do not contain any form of feature extraction.

261
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Rather, we define loci building blocks suitable for combination with other build-
ing blocks in feature transformations. The review starts at the well-known rect-
angular windowing approach and advances over object contour detection to im-
age pyramids and scale spaces, which are state-of-the-art in image and video
understanding.

Principally, localization in media understanding means to apply the big pic-
ture not on a media object as a whole but on certain – interesting – parts
(regions) of it. Other parts are simultaneously treated in the same way or
discarded. The resulting descriptions are merged and made subject to further
feature transformation, redundancy filtering or categorization. That is, localiza-
tion implies cyclic media understanding, i.e. the iterative application of feature
extraction on media representations with different levels of precision. The art of
localization lies in differentiating the interesting regions from the rest.

The simplest solution to this problem is considering everything as interest-
ing and performing rectangular segmentation. We have already come across this
form of windowing in the audio domain, where descriptions are generally not
computed for an entire media object but for short chunks of time. The localiza-
tion process is controlled by two parameters, the window size and the hop size
(as defined in the first part of the book). The major advantage of the approach is
also its major weakness. The simplicity of the windowing process cannot handle
variable borders between objects (one sound, one word, a face, etc.). Semanti-
cally related objects are cut in two or more pieces and valuable content is lost.
This drawback is of minor importance for audio, because the window size is
usually rather small and the descriptions for multiple components of the same
object can easily be merged in later steps. In the visual domain, however, the
reconstruction is generally significantly harder. Approaches, such as the visual
keywords discussed in the first part, suffer from this drawback.

One particular form of occurrence of the border problem are the artifacts
created by the transformation of limited chunks by unlimited functions, for ex-
ample, the Fourier transform. In the preceding chapter, we saw that most spectra
contain suspiciously high coefficients at the ends. See, for example, the audio
signals in Figure 13.3. These outliers are partially due to insensible cutting of
periodic signal components at the wrong point. The general remedy to this
problem is window smoothing. Figure 14.1 shows three examples. The general
approach is very simple.

1. Weight every sample of the media chunk of interest by a window function.

2. Perform the spectral transform on the weighted chunk.

The result is a more or less reduction of the artifacts. The figure shows the
results for the speech signal in Figure 13.3. In contrast to the spectrum there,
here, we give – for easier comparison – the absolute values of all coefficients. As



14.1. GENERAL LOCALIZATION METHODS 263

Bartlett

Hamming

Kaiser

Figure 14.1: Three Window Smoothing Functions.

we can see, all three windowing functions cause a reduction of the initial coeffi-
cient. However, the Bartlett and the Hamming function both introduce a new
artifact at the end of the spectrum. Still, the Hamming function is considered
a good choice for general-purpose window smoothing. For more information on
this well-investigated signal processing problem see, for example, [285].

A better form of localization would respect natural boundaries such as visual
object boundaries or spoken words. Edge segmentation, as discussed in the first
part of this book, endeavors to reach this goal. Edges are assumed wherever large
differences of luminance (contrast) are spotted. Alternative approaches include
simple thresholding, the split and merge approach and watershed segmentation.
In thresholding all pixels below a certain luminance threshold are considered
non-edges while all others are considered edges. The result is a very crude
representation of object boundaries. This method is hardly used anymore. It is
only applicable for very simple object detection in controlled, well-illuminated
environments (e.g. industrial robotics).

The split and merge algorithm combines region merging and region split-
ting. These algorithms implement the same idea as agglomerative and separ-
ative clustering in cluster analysis. In region merging, neighboring pixels with
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similar luminance are merged to objects. The process is repeated until every
pixel in a visual object is associated with one object. Region splitting follows
the opposite direction. Initially, all pixels are considered one object. From this
object, the most unsimilar pixel is removed, and so on. Split and merge com-
bines the bottom-up and the top-down approach for a more balanced result with
medium-sized objects.

Eventually, watershed segmentation is very similar to thresholding. The idea
is that regions with low/high luminance represent valleys/mountains in the re-
lief of the visual object. Hence, from a randomly selected set of starting points
neighboring samples with similar luminance are flooded with the intensity aver-
age. Repeating this process until all similar samples are made part of an object,
results in an object segmentation.

Whatever segmentation technique is used, the result of local description is
almost ever better than if the feature transformation was applied on a rectangu-
lar grid of windows. In particular, the interest point methods introduced in the
next section produce significantly better results if they are employed on media
objects with a contrast-based contour.

A second problem of localization is the variation of the resolution of a visual
object. Next to location, the size/clearness of an object matters in the object
recognition process of the human sense of vision. We have already encountered
the image pyramid concept in Chapter 12. An image pyramid can, for example,
be computed by multi-resolution analysis (MRA) with some wavelet base. The
left element of Figure 14.2 shows a typical image pyramid. Layer 1 represents the
largest resolution, e.g. the first iteration of MRA. In layers 2 and 3 the resolution
of the object is reduced by one octave each. Depending on the context, an octave
may be a factor of 2 or some value 2x.

The major weakness of the image pyramid is the reduced object size in each
layer of an object which makes it hard to identify correspondences between ob-
jects detected on different levels of the pyramid. The general application of
different resolutions is to test the robustness of objects detected on one level
by searching them on other levels as well. This application becomes more dif-
ficult, if the size of the location set varies over the layers of the media object
representation.

The scale space approach is similar to the image pyramid concept but without
its localization drawback. The right element of Figure 14.2 shows the general
idea. The object size is not altered by the process. Instead, the resolution is
reduced by applying a blurring filter on the image content. The larger the filter,
the stronger the blurring effect. Technically, this operation is nothing else than
positive convolution of the visual media object with a template that represents
a blurring filter. The most common template is the Gaussian function which is
quantized from the following function.
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Figure 14.2: Image Pyramid (left) and Scale Space (right).

ogauss(σ) = quant

(
1

2πσ
e−

l2x+l2y
2σ

)
(14.1)

Here, lx, ly are the locations in the template ogauss while σ is the scaling
parameter that is equivalent to one layer of the scale space. The larger the
standard deviation is, the larger the filter becomes. The function quant generates
a square matrix out of the continuous definition of the Gaussian filter kernel.
Of course, the resulting matrix is underdefined, i.e. the continuous kernel can
hardly be recovered from the template. The filter for the Lmoore neighborhood
is defined as follows:

ogauss(1) =

1 2 1
2 4 2
1 2 1

 (14.2)

The filter application is simple convolution.

oss(σ) = o⊗ ogauss(σ) (14.3)

The scale space layer oss at position σ is created by positive convolution.
The object oss is a complete representation of the scale space.

Scale spaces preserve the locations set of the input object o. On every level,
the same points can be addressed. This property is paid with high redundancy
in oss. Neighboring samples are highly similar. The similarity increases with
σ. However, this waste of space is outweighted by the advantages of easier
application.

Remark: In the last chapter we mentioned the idea that edge operators in
combination with scale spaces are very similar to the usage of wavelets (e.g.
Haar) and image pyramids in multi-resolution analysis. The discussion so far
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should make clear where the similarity lies. The major differences, however, are
the divergent location sets and the content of the layers, which are still samples
in the scale space while they are wavelet coefficients in the multi-resolution
analysis.

Scale spaces are today state-of-the-art for local feature transformation in the
visual domain. In the next section, we will see how they are used.

14.2 Visual Interest Point Detection

In this section and the next, we explain how local descriptions are extracted in
the visual domain. The present section focusses on the identification of inter-
esting points while the next explains the algorithms used to actually describe
interest points. The most relevant recipes for identification have two ingredi-
ents: scale spaces – as discussed above – and a specific form of crosscorrelation
(template matching). This section introduces solutions for the missing ingredi-
ents and explains their combination. The theory of the Laplace operator is our
leitmotif. Alternative approaches are discussed in place.

Figure 14.3: Examples of Ideal Interest Points ( c© CNBC ).

What is an interest(ing) point in a visual object? This question can hardly be
answered on the semantic level of human cognition. The left part of Figure 14.3
makes a few suggestions for the leading example. The nose tip is certainly an
important property of a face. So are the eyes, corners of the lips, etc. However,
with the limited means of signal processing such points are seldom extractable
and describable. Therefore, we use a very simple definition of an interesting point
below. An interest point is a sample or a group of samples that are somehow
isolated from their neighborhood. Though simple, this definition contains two
significant requirements. First, we need some definition of neighborhood and
grouping. Below, we will mostly rely on the Lmoore neighborhood of a sample.
Second, we need an operationalization for isolation. For example, the tip of the
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Eiffel Tower is – though connected to the rest of the structure – an isolated
point. In this section, we will see, how isolation can be defined effectively.

Before we jump into the details, we should outline the motivation for local
description of visual media. The major reason is our desire to imitate human
perception. In the first part of the book we saw that the human eye is a scan-
ner that generates a stream of visual information by saccadic seeing. Saccades
are not uniformly distributed but attracted by certain interesting points (for
example, the nose tip). That is, while large parts of a scene are simply ignored,
other small elements stand for the majority of the visual information that enters
cognition. The author of [12] could show that points with high curvature are sig-
nificantly more important in object recognition than other points. Such points
should be recognized as interest points. By local feature extraction we want to
achieve exactly this result. Local descriptions should describe the interesting
points in detail (e.g. points of change) while ignoring the uniform majority of
the visual media information (e.g. edges).

From the technical point of view, we require a better foundation for object
representation than edge information. Edges are often noisy, connect areas that
are not semantically related and are not invariant against rotation and other
transformations – as long as no additional transformation is applied such as
Hough transform. Edge detection may be seen as one step in the evolution of
local feature detection. Certainly, edges contain valuable information, but the
majority of their content is more or less redundant. We are rather interested
in the corners of edges as one form of interest points. See the right element
of Figure 14.3 (canny edge map of the left element) for an example. In the
next section we will see that groups of interest points can reach a high degree
of invariance against transformations. Therefore, well-defined expressive points
are preferable over sketchy edge maps.

For local visual feature extraction we consider a sample isolated, if its gray
value (luminance) is significantly different from the gray values of the majority
of its neighbors. In contrast, an edge could be defined as being significantly
different from its neighbors in one major direction but similar in the other. This
definition defines an interest point as an extremal point. It is therefore not
surprising that the formulation can be operationalized best by computing the
first and second derivate of the signal. Figure 14.4 shows an example. The left
column of the graph shows the maximum of a continuous signal. Its first derivate
has a zero crossing at the position of the extremal point. The second derivate is
even more characteristic, because it expresses the maximum in a series of three
zero crossings of which the second locates the maximum.

Should we, therefore, define an interest point as a zero crossing in the second
derivate of the input signal? No, because in the discrete domain the computation
leads to a completely different result. The right column of the figure shows the
process. For a sequence of three samples that describe a minimum the first
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Figure 14.4: First and Second Derivate of a Signal in a Continuous Space (left)
and a Discrete Space (right).

derivate has a zero crossing in the – non-existent – center point, which leads to
a maximum in the second derivate. This is because the partial derivation in the
continuous space is translated to taking the contrast in the discrete space. The
following equation shows the computation for some media object o.

δx = olx − olx+1 (14.4)

Here, δx is the derivation in direction x at position l. For the sake of simplicity
we omit the location parameter in δ. Still, for the understanding of the rest of
the section, it is important to keep in mind that δ always refers to a concrete
sample at location l. Using the above equation, arbitrary partial derivates can
be computed by the following rule.

δxy =
∂o

∂x∂y

∣∣∣
l

(14.5)

That is, the second derivate is computed by twice applying the derivation in
direction x. The individual derivations are separable.

The following example should make the practical application of the derivation
operator clear.

o =

a b c
d e f
g h i
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Media object o is an image of three rows and three columns. Each variable
a− i stands for a luminance value. For this object, the first and second derivates
in directions x, y can be computed at center position as follows.

δx =
(
d− e e− f

)
δxx = d+ f − 2e

δy =
(
b− e
e− h

)
δyy = b+ h− 2e

We see that the second derivates are both scalar values. This is the practical
reason why interest point detection is usually performed in 3x3 Moore neighbor-
hoods.

Now, it is clear that we want to express isolated points by their δ∗ proper-
ties. The straightforward solution would be to look for points that are maxi-
mal/minimal in both directions x, y. Generally, interest point criteria can be
derived from the Hesse matrix.

ohesse =
(
δxx δxy
δxy δyy

)
(14.6)

Similar to the Jacobi matrix that assembles all first derivates for a function,
the Hesse matrix assembles all second derivates. We use it as the ground for the
definition of three popular interest point criteria b.

blap = δxx + δyy (14.7)

bdoh = δxxδyy − δ2
xy (14.8)

bhar = δxxδyy − δ2
xy − δ2

xxδ
2
yy (14.9)

The first form blap is the Laplacian approach (also known as the Nabla op-
erator ∇). It uses simply the trace of the Hesse matrix. The second approach
bdoh is called the Determinant of the Hessian since it computes the determinant
of the Hesse matrix. The last one, bhar is an advanced form of the Harris cor-
ner detector.1 Before we discuss the similarities and differences of these three
criteria, we have to name their common optimization condition.

|b∗| → max (14.10)

That is, we believe a sample to be an interest point, if the absolute value of
its criterion is a maximum. The absolute value is required for the Laplacian, the
two other criteria generally produce maxima.

1Often, the second and third terms of the Harris detector are downweighted by a factor w.
For the sake of simplicity this degree of freedom is omitted in this general introduction.
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Remark: The expert reader may be surprised that we do not distinguish
between corner detection and blob detection. The first problem is usually ap-
proached by methods based on the autocorrelation matrix, i.e. the first derivates
around a given point while the Hesse matrix is usually employed for blob de-
tection. For two reasons we do not follow this line. Firstly, it is a fact that all
operators introduced here can as well be employed for corner detection as for
blob detection. The difference lies only in the embedding of the operators in
scale space which can be performed for all operators equally well. Secondly, in
the highly constrained case of Moore neighborhoods of digital samples the actual
difference between the autocorrelation matrix and the Hesse matrix exists only
in the δxy element. Practically, the autocorrelation value of this component has
similar statistical properties. The small difference in absolute values can easily
be compensated by a weight for subtracted diagonal components (as in the case
of the Harris detector).

For the understanding of the Harris corner detector it is important to know
that its evolution has led to two forms. The second form looks for a maximum
in the Eigenvalues of the Hesse matrix.

λ1,2 =
δxx + δyy

2
±

√
δ2
xy −

(
δxx − δyy

2

)2

(14.11)

This result for the Eigenvalues λ∗ is reached by transforming the Eigenvalue
problem of the Hesse matrix to a square function and solving this function. The
Eigenvalues are maximal if the second derivates in both directions are high (first
term), if there is no diagonal relationship (second term δ2

xy) and if the two partial
derivates are very similar (last term). This reasonable definition is put to the
extreme by the bhar definition above, which is maximal if the derivates are high
in both directions, no diagonal components exist and the deviations between
the derivates in the main directions are as small as possible. Since the latter
definition uses multiplication where the first uses summarization and contrast,
it reacts much stronger to small deviations. It is, therefore, stricter.

In contrast to the Harris detector, the Laplacian detector does not consider
diagonal edges and does not give a penalty for unbalanced differences in the
both major directions. The Laplacian is the least strict interest point detec-
tor in our list. The determinant of the Hessian, eventually, considers diagonal
edges negatively but does not give a penalty for unbalanced derivates in the
main directions. This criterion lies in the middle between Laplacian and Harris
detector.

The practical selection of an interest point criterion depends on the desired
strictness, but as well on the available resources for computation. Of the three
presented criteria, the Laplacian detector can easily be operationalized by tem-
plate matching. If we define the Laplacian criterion for the example above, we
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get the following result.

δxx + δyy = b+ d+ f + h− 4e (14.12)

The same result can be achieved by applying the first of the following two
matrices on the media object o by positive convolution: blap = o⊗ olap.

olap =

0 1 0
1 −4 1
0 1 0

 ∼
1 1 1

1 −8 1
1 1 1

 (14.13)

The first matrix is equivalent to the formal derivation of the Laplacian cri-
terion. However, practically the second form is the more frequently used one.
It considers the diagonal points of the neighborhood and is therefore similar to
the determinant of the Hessian approach.

Apart from the named criteria for interest points a few others do exist that
are not based on the Hesse matrix but have also proven to isolate interesting
points. The FAST approach investigates a circular neighborhood (the so-called
Bresenham circle, i.e. a digital approximation of a circle, only points over the
circular contour are considered) around location l and assumes this sample to be
an interest point if its intensity is n% higher/lower than the neighboring samples.
Of course, the quality of this approach depends on the tuning parameter n.
The SUSAN approach extends FAST by down-weighting neighboring pixels by
a Gaussian function.

δx̄ δȳ

Figure 14.5: Gradient Vector Components in Ridge Detection.

Eventually, one recent development in the field of interest point detection
is ridge detection. The ridge is a concept somewhere between interest points
and edges. Figure 14.5 shows an example. Ridges are longitudinal objects
distinguished by their luminance. Like interest points, ridges can nicely be
defined using the Hesse matrix. The processing is to rotate the Hesse matrix
until the diagonal components δxy are zero. This result can, for example, be
reached by replacing the matrix with its Eigenvectors. Then, ridges are defined
as follows.

δx̄ = 0 ∧ δx̄x̄ < 0 ∧ |δx̄x̄| > |δȳȳ| ∨ δȳ = 0 ∧ δȳȳ < 0 ∧ |δȳȳ| > |δx̄x̄| (14.14)
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Here, x̄, ȳ are the rotated directions of the Hesse matrix. Of the two or-
connected expressions the first and second terms define ordinary maxima. The
third terms express the longitudinal aspect. In the direction of the maximum
the elongation must exceed the one of the other dimension. Ridges are certainly
local features. However, their current major application lies in the description
of high-level semantics such as symmetries. We will, therefore, meet them again
in the third part of the book in Chapter 25.

So far, the section can be summarized as follows. Interest points are prac-
tically detected by computing the Hesse matrix for each non-border sample,
computing a criterion for each point and selecting those points as candidates
that are extreme. Apart from the problems of how to evaluate the quality of
candidates and how to describe interest points (both of these questions are an-
swered in the next section) one obvious question remains. The current state
of affairs allows only the detection of one-sample interest points. How can we
detect larger blobs as interesting (for example, the ball in a football game)?

The solution to this problem is a straightforward application of scale spaces.
Most state-of-the-art interest point detection methods employ the following al-
gorithm.

1. Compute a scale space oss for the input media object o, for example, using
a Gaussian function.

2. Employ the interest point detection algorithm on each level of the scale
space.

3. Select those samples as candidates that fulfill the optimization criterion on
at least n layers.

Since scale spaces preserve the locations set on all layers, corresponding in-
terest point candidates can easily be matched. This algorithm represents the
general scheme of local feature extraction in the visual domain. Apart from its
simplicity it has in advantage that the scaling step and the detection step can
be merged if for both convolution operations the templates are given as matri-
ces. For example, if smoothing is performed by ogauss and detection by olap
than both operations can be merged to olog = ogauss.olap where the dot denotes
point-wise multiplication. Where necessary, the size of the Laplacian template
has to be increased. This approach is called the Laplacian of Gaussian method.

One noteworthy exception from this interest point detection scheme is the
Maximal Stable Extremal Regions approach (MSER). MSER neither employs
a standard scale space nor detection by convolution. Instead, the following
algorithm is applied on an input object o where each sample is a luminance
value in the interval [0, 100].
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for t:=0:100 do
h(t) := o;
foreach l in L(o) do

if (h(t,l)<t) then
h(t,l) := 0

else
h(t,l) := 1

endif
endfor

endfor

m:=0
for t:=1:99 do

m(t) := sum(h(t+1),h(t-1)) / sum(h(t))
endfor

Here, L is a set of locations, t is a threshold and h is a space of binary images
for increasing luminance thresholds. Function sum simply counts the sum of all
values in an image. Eventually, m holds a value for each non-border layer that
is minimal if the Gestalt of a region (samples with value ’1’) does not change
over three consecutive layers. Such a layer – identified by index t – is called
an MSER. Of course, the algorithm can easily be extended to larger spans of
stability by considering more layers in the calculation of m.

The MSER algorithm is very simple yet highly effective. It covers the scale
space effect by identifying blobs through varying thresholds of luminance and
it covers the detection-by-isolation idea by comparing neighboring layers. The
result is a reliable interest point detector.

In conclusion to this section, the main path towards visual interest point de-
tection today is computing a Gaussian scale space and applying an optimization
criterion on each pixel that employs the second derivates in form of the Hesse
matrix. In the next section we will see, how such interest point candidates can
be tested for validity and robustly be described by their neighborhood.

14.3 Local Descriptions of Visual Media

The description of visual media objects by local properties comprises two steps.
In the first, the candidates for interest points have to be filtered and described
in an expressive form. In the second step, a model has to be defined for the
comparison of sets of interest points in the categorization process. The second
step is required for fitting the interest point concept into the big picture of media
understanding. Below, we deal with the filtering and description problem first
and, in the second part of the section, with the comparison problem.
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Why can we not just use the location of an interest point as its description?
One technical reason is that locations are simply too short for providing a proper
data structure for the storage of semantic variance. More relevant, though, is the
question: What characterizes an interest point? It is certainly not its location.
For example, the position of the top of the Eiffel Tower will vary significantly in
the photos taken by tourists. Still, it is clearly recognizable. What characterizes
an interest point is its neighborhood – hardly surprising, since we located them
by local media properties in the last section. Therefore, interest points should
be described by the distinct properties of their neighborhood.

In recent years, a number of recipes have been suggested for the description
of interest points. Most of them employ intensity gradients – though practi-
cally highly relevant exceptions do exist. One classic approach from this group
is the Scale-Invariant Feature Transform (SIFT) algorithm. In the next para-
graphs, we describe this approach. Then, we illustrate alternative approaches
by emphasizing their differences to SIFT.

The SIFT algorithm as it was originally defined in [237] and refined in recent
years employs the steps illustrated in Figure 14.6. As we can see, the recipe
consists of one localization building block – the point detection as described
in the last section –, a straightforward interpretation step for the creation of
the neighborhood-based description, and several intelligently, yet heuristically
defined quantization steps.

The detection of interest points is performed using the Difference of Gaus-
sians approach which should approximate the Laplacian of Gaussian approach.
This procedure does not apply template matching with the Laplace operator and
positive convolution. Instead, negative convolution is used to compare a spa-
tial location on one scale to the same points on neighboring scales. Differences
beyond a certain threshold are considered interest point candidates.

This procedure leaves the algorithm with a large set of relatively unstable in-
terest point candidates. In the interpolation step, the location of each candidate
is refined by computing the first and second derivates in directions x, y, σ. Here,
σ is the resolution, i.e. the location in the scale space dimension. Practically, a
second-order Taylor expansion is applied and the new location is defined by the
following equation.

l̄x,y,σ = lx,y,σ + δx,y,σ + δδx,y,σ (14.15)

The new location l̄ is moved in the direction of the first and second derivates
δ, δδ – two delta coefficients. If the change in location is above a certain threshold,
the new location is considered a better starting point than l and the refinement
step is repeated for the new location l̄.

After interpolation, weak candidates are removed. A candidate is weak if it
has low contrast to its neighbors or if it is part of an edge (ridge). Low contrast



14.3. LOCAL DESCRIPTIONS OF VISUAL MEDIA 275

Source

Detection

Interpolation

Low Contrast,

Edge Removal

Orientation
Assignment

Descriptor
Creation

Descriptor 1 ... Descriptor n

Localization

Quantization

Quantization

Quantization

Interpretation

Figure 14.6: Scale Invariant Feature Transform.

is detected by computing the second-order Taylor expansion in directions x, y
(the scale remains constant). If this simple gradient is below a certain threshold,
the candidate is discarded. If not, its spatial location is adapted by the gradient
vector. Edges are recognized by comparing the Eigenvalues of the Hesse ma-
trix at location l as in ridge detection. However, the application goes into the
opposite direction. If the relationship of the two Eigenvalues is above a certain
value – which indicates a ridge/edge – the candidate is discarded otherwise made
subject to the orientation assignment step.

As we can see, the quantization so far is based on a number of heuristically
defined thresholds, which is both good and bad. It is good since due to the
thresholds, SIFT interest points can be computed quickly and with high relia-
bility. The bad aspect is the rigidity of the thresholds which are not adaptable
to the requirements of different applications. Figure 14.7 shows an example. For
the media source in the top left a high number of candidates is computed of



276 CHAPTER 14. DESCRIPTION OF LOCAL MEDIA PROPERTIES

Source Keypoints

Descriptions One Histogram

Figure 14.7: SIFT Example ( c© CNBC ). This figure was created using the soft-
ware library vlfeat in version 0.9.9 [382].

which only the few interest points in the upper right element remain. As we
can see, the face of the anchor person is represented by just one reliable interest
point – the nose tip. More points would be desirable in this region. This feature
is currently not part of SIFT but could, for example, be realized by defining
different profiles for different media regions (e.g. detected faces).

In the orientation assignment step, the main directions of the neighborhood of
the interest point are detected by gradient computation. In detail, the following
algorithm is performed for all neighboring points of location l̄ in the media object
o, i.e. θ(o, l̄, ε).

1. Compute direction a1 and magnitude a2 of the steepest ascent (gradient)
of the point as follows:

a1 =
√
δ2
x + δ2

y (14.16)

a2 = arctan2(δx, δy) (14.17)
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Here, the δ values denote the first derivates in the given directions.

2. Quantize the orientation to 36 bins by ā2 = round(a2/10).

3. In the histogram of directions add the value a1 ∗1.5σ to the bin of ā2. The
value σ is the identifier of the scale space layer.

The result is an orientation histogram in which the highest peak identifies
the main direction. For this direction and all peaks that are within 80 per cent
of the highest peak, a descriptor is computed. This algorithm creates a certain
amount of rotation invariance.

In the last step, one description is computed for each selected direction by
the following algorithm.

1. At the location and scale of the interest point a 4x4 grid of 4x4 samples
(=16 regions) is laid over the scale space. This grid is rotated into the
direction of the peak.

2. For each region, an orientation histogram as in the orientation assignment
step is computed. The only difference is that only eight directions are
distinguished. The bottom row of Figure 14.7 illustrates such orientation
histograms.

3. The resulting 128 bins (8 bins per histogram, 16 regions) are smoothed by
a Gaussian, normalized to unit length, denoised by removing all bins that
are close to zero and normalized to unit length again.

Eventually, the SIFT algorithm describes each interest point in one direction
by 128 values. The entire media object is described by a relatively small number
of such keypoints that are robust against changes in illumination, rotation and
other transformations. This recipe has been so successful that it is today also
used as a global feature transformation. The global SIFT (also known as GIST)
employs the description algorithm not on the neighborhood of one interest point
but on an entire media object.

SIFT is only one – prominent – example for local feature transformation.
Alternatives include ColorSIFT, GLOH and SURF. The ColorSIFT algorithm
takes colors into account and extracts interest point candidates only at color
edges which is reasonable, because we usually distinguish objects by their colors,
not their luminance. The GLOH algorithm is highly similar to SIFT but employs
more scales for detection, and factor analysis for the reduction of description
size. SURF employs the insight that scale spaces in combination with local
operators are very similar to wavelet decomposition. The algorithm uses a Haar
wavelet decomposition instead of the scale space approach in SIFT. Of course,
the gradient-based feature transformation introduced above is only one way to
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describe local media properties. Recent experiments have shown that applying
state-of-the-art color and texture features on local neighborhoods often results in
descriptions that are as good as or even better than SIFT descriptions. That is,
the interest point detection step should be seen decoupled from the description
step. See [325] for a nice performance comparison of local description methods.

Furthermore, it could be interesting to involve higher-level semantics in the
quantization sequence of the feature transformation. One option would be to
employ the laws of Gestalt for the elimination (or protection) of interest point
candidates. For example, if some interest point candidates indicate a Gestalt
primitive such as a group of aligned elements, then fitting points with too low
contrast should still be considered while non-fitting points with high contrast
should be eliminated. Implementing this idea would require the definition of
trade-offs between different interest point criteria that would turn the simple
SIFT recipe into an intelligent yet to be parameterized algorithm. Despite the
curse of dimensionality, introducing models and templates for some important
applications might be worth the effort.

One problem remains: Though the size of each descriptor is fixed, the total
length of a description depends on the number of selected interest points. Even
worse, the sequence of interest points depends on the viewpoint. That is, it is
not possible to define a fixed-length description of local properties where each
description element has a clearly defined meaning. Therefore, the big picture
of media understanding is not directly applicable. We require an intermedi-
ate step that transforms the cloud of descriptions into a well structured media
representation.2

This intermediate step is a generalization of the visual keywords approach
introduced in the first part of the book. There, we extracted randomly chosen
regions of fixed size and compared two sets of regions by dynamic association.
Choosing region centers randomly implies the risk that important objects are
cut at undesired points. This risk is minimized by the careful selection of interest
points as peaks in some neighborhood.

Remark: From a formal point of view, we can argue that one important
step is missing in the SIFT recipe. All feature transformations we discussed so
far finished with an aggregation step as the complementing element to initial
localization. SIFT lacks this step. It has to be added prior to categorization.

The generalization of the visual keywords approach typically used on local
descriptor sets is called the Bags of Features (BOF) approach. It was derived
from the Bags of Words approach in text understanding. Figure 14.8 illustrates
the idea. For two sets of descriptions a three-step algorithm is executed. In the
first step, descriptions of interest points (words) are quantized to members of

2This topic is half way between feature extraction and categorization. Since it only appears
for local visual features, we decided to discuss it here and not together with the general-purpose
methods discussed in the categorization chapters.
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Figure 14.8: Bags of Features Method.

a so-called vocabulary (for text, for example, the principal forms). The mem-
bers of the vocabulary are used as bins in a histogram. The histograms are
populated by counting the occurrences of all members of the vocabulary. Even-
tually, the histograms are compared by some similarity measure. The last step
can, of course, be replaced by any categorization method, in particular, dynamic
association models such as the earth mover’s distance.

The BOF approach is a nice example for media understanding of media
understanding. The first cycle creates sets of descriptions. The categorization
step is a second cycle in which the sets are transformed into regular histograms
before they are categorized. However, the scheme could be broken up by applying
the dynamic association algorithm directly on the clouds of descriptions. For
example, the Hausdorff distance could be used to rate the match between two
sets of descriptions. Alternatively, local descriptors could be organized by 2D
strings (see first part) and made subject to rule-based classification.

That is, a number of alternatives exists for the application of local descrip-
tions. However, computing SIFT and using BOF for categorization is a fre-
quently employed approach. It is recommendable as a first solution for a wide
range of visual media understanding problems. For optimization, though, it ap-
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pears reasonable to extend/replace the standard quantization steps by problem-
specific rules.

14.4 Local Description of Other Media

In this last section we investigate if the principles of local visual feature transfor-
mation are also applicable to the other media types under consideration in this
book. We start with summarizing the major assets gained from the first three
sections. Then we investigate if these methods can be applied to other quanti-
tative media types. Eventually, we try to identify applications in the symbolic
media domains.

We believe that local feature extraction in the visual domain provides four
major tools that might be interesting for other domains as well.

• Scale spaces for the representation of media data at varying levels of details

• Interest point detection by Hesse matrix criteria

• Local description by gradients of neighboring samples

• Aggregation by the bags of features approach

Some of these methods could likewise be applied on some types of audio
and biosignals. Scale space representation does not make sense in the time
domain for music, speech or the detection of slow cortical potentials, because
the characteristics of these signals are distributed over the entire data streams.
However, the approach may be applicable in the spectral domain, where different
scales could be used by divide-and-conquer algorithms. One application could
be rhythm pattern detection by linear prediction, which could first be performed
on coarse levels. Regions of interest could be investigated on finer levels.

Figure 14.9: Interest Points of an ECG Signal.

Furthermore, scale spaces could be employed on all non-continuous audio and
biosignal content types, including environmental sounds, P300 detection, the
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recognition of spike wave complexes and K complexes. Such time-limited events
require some form of peak detection, which could, for example be performed on
coarser levels of a scale space before moving to more detailed analysis. For the
recognition of such events, derivates – analogous to the Hesse matrix in the
two-dimensional case – are already used today. Figure 14.9 shows a biosignal
example. The peaks of an ECG signal could easily be detected on coarse levels
of a scale space by taking the second derivate.

Scale spaces and interest point detection by derivates appear to be very useful
for stock analysis. The first method could be employed instead of averaging,
since it also creates smoothed variations of the original signal. On such a scale
space, point detection could be applied for the recognition of exceptional events.
Groups of interest points could be used to describe limits and patterns. We do
not see a great potential for the description of audio by gradients of neighboring
signals, because in these domains we are usually interested in the temporal
context of an event rather than in the local structure which is anyway clear.
However, in the stock domain, local description might make sense, since we
are not only interested when something happens but also, in which direction.
Local gradient histograms might describe interesting events appropriately. The
bags of features method could generally be employed for summarization. Such
a tool would be valuable for the observation of rhythmic events in biosignal
understanding and possibly for the long-term observation of markets.

For the representation of symbolic media such as bioinformation and text the
adaptation of the scale space approach hardly makes sense. Quantitative media
lack the neighborhood relationships required for smoothing. For the same rea-
son, point detection and local description are not translatable to this domain.
The bags of features method, however, which originates from the text domain
(bags of words) could as well be applied on some problems of bioinformation
understanding. In particular, global and local alignment could be solved itera-
tively by defining bags of gene sequences and comparing bags of two genomes
by, for example, the earth mover’s distance. This process could be iterated from
bags covering longer strings to bags of short sequences.

In conclusion, local feature extraction is state-of-the-art for object description
in visual media objects. The many advantages of the approach include efficient
handling of occlusions, noise and missing data, the good performance of the
bags of features approach but as well a positive effect on the semantic gap
and a significant reduction of the dimensionality problem. The semantic gap
is reduced by local descriptions, because they imitate human visual perception
and tend to cover concepts considered semantically relevant by human beings.
The dimensionality reduction is reached by the few parameters of the method
and the aggregation in the bags of features approach.





Chapter 15

Description of Motion

Introduces motion as a fundamental aspect of video, discusses simple motion
features, the computation of optical flow and advanced motion descriptions such
as camera motion and motion trajectories.

15.1 Simple Motion Descriptions

The description of motion is a detail problem of media understanding since it
is not relevant to all media types, not even to all quantitative media types,
but just to video. Only video has a time dimension that is able to capture the
motion of subjects and objects. The special case of EMG will be discussed below.
Still, we endeavor in this chapter not just to describe the principles of motion
feature extraction but also to set these methods in context with general feature
extraction in media understanding. As we will see, motion feature extraction is
indeed related to other visual methods, in particular to local feature extraction
as discussed in the last chapter.

This first section introduces the general concept of motion as well as a few
simple methods for motion description. The second section deals with temporal
segmentation, the decomposition of a video stream in a sequence of shots. In
Section 15.3, we introduce optical flow as the fundamental concept for the motion
description methods explained in the last section of the chapter. As in the
preceding chapters, we conclude by relating the introduced transformations to
the fundamental problems of media understanding.

In this section, we first discuss the term motion and show how motion is
handled in video compression. Then, we introduce two fundamental description
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methods: background subtraction and global motion activity. Eventually, we
reflect the relevance of motion description methods for other media types.

Perceived motion is the inertia of the human visual cognition system (eye,
optical nerve, visual cortex, etc.) to resolve spatial shifts over time beyond a
certain degree. That is, if a sufficiently rich stream of small shifts is presented we
are unable to distinguish step-wise change from continuous motion. In nature,
where movement is continuous down to the quantum level, any stream of shifts
is fine-grained enough to represent motion. In the artificial world of digital video
already 25 steps per second (to some authors, 24) are sufficient to deceive human
vision. Therefore, cinema, television and related media operate with at least 25
images (frames) per second.

Obviously, such a stream of images is highly redundant in the time domain
– even more than in the two spatial ones. At 25 frames per second, each image
is just shown for 40ms. In such a small time span only very limited shifts are
possible. For example, the author could verify in an experiment with a ballerina
that the fastest foot motions humans are capable of can be captured perfectly
at 250 frames per second, i.e. in images captured with a delta of 4ms there is
no visual difference. Now, compare foot exercises of a ballerina to the typical
velocity of average humans and it becomes clear that human motion can very
well (i.e. with high redundancy) be captured at 25 frames per second. Some
artificial types of movement (e.g. rocket launches, car crashes), though, require
higher temporal resolution – again for the price of even higher redundancy from
frame to frame.

Now, how do state-of-the-art video compression algorithms deal with this
redundancy? In the spatial dimensions, typically, selected coefficients of wavelet
transforms are employed to reduce the level of redundancy. Since the temporal
redundancy is even higher, a fundamentally different approach is employed over
time. Instead of interpretation, a localization procedure is employed where the
frames are divided into macroblocks of fixed size which are searched in neigh-
borhoods of their location in later frames. The best location for a macroblock
is described by a motion vector that gives the location delta in the two spatial
directions [δx, δy].

This procedure is similar to the edge detection approach introduced in the
first part of the book and to the description of interest points discussed in the
last chapter. In both cases a location of interest (here, the macroblock) is in
a neighborhood compared to isomorph structures by convolution and the best
match is chosen by some optimization criterion. The major difference of the
macroblock approach is that motion vectors stretch over time, i.e. the best
match is not identified in the object where the location of interest lies but in
some temporally related object. The rest of the procedure is highly similar.
Below, we will see that motion vectors play a very important role in sophisticated
description methods for motion.



15.1. SIMPLE MOTION DESCRIPTIONS 285

In this introductory section, however, we would like to limit ourselves to the
most simple methods of motion description. The first to discuss is background
subtraction. Figure 15.1 illustrates the idea. Background subtraction seeks to
eliminate those parts of the visual data that do not change over time. The
remaining samples are highlighted. The top left and right frames are temporal
neighbors in a video shot. The bottom row shows the results of background
subtraction for varying thresholds.

t=10% 50% 90%

Figure 15.1: Background Subtraction for Varying Thresholds ( c© CNBC ).

The figure was computed for two grayscale video frames o1, o2 with locations
set l by the following algorithm.

foreach l in L(o1) do
x(l) := | (o1(l)-o2(l) |
if x(l) > t then

x(l) := 1
else

x(l) := 0
endif

endfor

Here, t is a threshold that determines the maximal difference in luminance
of the two frames. If the difference is above the threshold, the sample is consid-
ered being part of motion (foreground) otherwise static background. The figure
shows that the selection of the threshold is crucial for the success of background
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subtraction. If it is set too small too many samples are being considered part of
the motion. If it is set too high the motion vanishes.

Background subtraction is hardly ever used as a description method in its own
right. It is rather a pre-processing step for the identification of spatial regions
with high potential for interesting motion. It can, for example, be employed to
identify the region of interest for the detection of global motion activity. In the
given example, this region would certainly include the anchor person.

Motion activity is a global concept. The idea is to summarize the motion
in pairs of frames independent of their sematic meaning. Several methods have
been proposed for this purpose. For example, in [174] the authors of the MPEG-7
standard for media description suggest using the motion vectors of the media
compression for the computation of motion activity. Lengths and directions of
motion vectors can, for example, be aggregated statistically by mean and vari-
ance. If the process is repeated over rectangular image regions (e.g. a 3x3 grid) a
histogram can be computed that expresses the overall activity in a video. A dif-
ferent approach would use the output of background subtraction. The simplest
form would count the number of non-zero samples in the output matrix x. The
larger the sum the higher the activity between two frames. More sophisticated
algorithms could take the position of a sample into account as well as rely on
the luminance difference instead of the binary value, etc.

Motion activity can be used to get a first impression of the content of a
video. It can, for example, be used to discriminate between types of content
such as documentaries, romantic movies, sports, newscasts and action movies.
All of these types of video have specific rates of motion activity. Another, more
sophisticated application would be as a control parameter for motion compensa-
tion. Motion compensation is a pre-processing step in video object recognition.
Due to the movement, object boundaries are often diffuse. Motion compensation
uses the information of multiple instances of the same object to reconstruct the
object boundary. The fundamental activity in a video can, for example, be used
as a global estimate for the quality of object boundaries.

In the introduction we mentioned that this chapter is outstanding in the as-
pect that it focusses on only one media type. The majority of methods discussed
here deals with the specific situation of digital video where change is encapsu-
lated in sequences of spatial objects. However, there is one data type that also
capture motion: The electromyography (EMG) is a biosignal of muscular activ-
ity, hence, describing human motion. The output of EMG capturing, however,
is a sequence of potentials over time. Such a signal can be analyzed by the
methods discussed in the preceding chapters. It does not contain any semanti-
cally relevant object information. Therefore, the EMG is a motion signal of a
completely different type that is not relevant for discussion here.

In summary, motion is a very specific phenomenon that requires tailor-made
methods. Background subtraction and motion activity provide a first idea of the
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level of motion. More sophisticated approaches require the computation of dense
motion vector fields as well as localization over time by temporal segmentation.

15.2 Temporal Segmentation

In this section we deal with a fundamental property of digital video. Most videos
are compositions of multiple scenes (shots) that were organized in a specific
semantically meaningful order by a human operator with the help of a video
editing (cutting) software. The goal of temporal segmentation is the reversion of
this process, i.e. the recognition of shot boundaries. This localization procedure
is motivated by the hypothesis that the content of one shot is less variable than
the content of multiple shots. Therefore, it should be easier to describe one shot
by conventional feature transformations than an entire sequence of shots.

Temporal segmentation is one iteration in a media understanding of media
understanding process. It provides the boundaries between shots. Consecu-
tive iterations may focus on motion description within shots as well as on the
description of colors, textures, objects or the content of accompanying audio
tracks. Being an iteration of media understanding requires on the other hand
the existence of some categorization method for segmentation. As we will see
below, categorization in temporal segmentation is usually very simple. Most
frequently, rule-based decision making based on static thresholds is used. Even
with this simple approach high performance values can be achieved. Most shot
boundaries are easy to identify.

In the remainder of this section we state a model of shot boundaries, describe
approaches for the detection of edgy transitions (cuts) and of continuous tran-
sitions (fades, wipes) as well as sophisticated models that derive shot boundary
information from the high-level semantics of the type of content.

Figure 15.2: Crossfade Example ( c© CNBC ).

Generally, shot boundaries may take one of three forms:

• Cut : One scene ends with one dedicated frame and the next scene starts
with the next frame. If the boundary is a cut, two shots are sequenced
without overlap.
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• Fade: The temporally first scene dissolves while the second scene fades
in. the result is a spatiotemporal overlap of two scenes as illustrated in
Figure 15.2.

• Wipe: Like in the case of a fade, the two scenes overlap. In the case of a
wipe, however, a binary template (mask) defines which samples from which
scene become visible when. The two scenes are mixed spatially instead of
temporally. For example, it is common in sportscasts to use diamond wipes
or wipes in the form of flags, logos, etc.

Cuts can be detected easily by very simple methods. For the detection of
fades, adapted methods do exist that lead to a high recognition rate. Wipes
are harder to detect, since many different forms do exist and the patterns of
the overlapping frames can be highly variable. Luckily for media understand-
ing, wipes are hardly used in digital video production today. Sportscasts and
newscasts are among the few exceptions. Generally, the same methods can be
employed for the detection of wipes as for fades, but the recognition rates are
significantly lower.

ε0

Time

Distance
Cut Cut Cut

Figure 15.3: Histogram-Based Temporal Segmentation.

Figure 15.3 illustrates the general model for the detection of cuts. The ver-
tical axis represents the differences between neighboring frames. That is, in
the first step, pairs of frames1 are compared by their properties. These prop-
erties may be aggregated background subtraction results as described above.
Practically, it is often the Euclidean distance of color or luminance histograms.
Whatever method is used, it is a measure for the motion activity. If the distance
is high, high motion is assumed. Now, cuts are defined as points in time with
exceptionally high distance, because neighboring frames belonging to different
shots should have significantly different content. Hence, shot boundaries of cuts
can be detected by a simple threshold ε0 that defines the limit when the differ-
ence between two frames is considered beyond the possibility of being created
by motion. Practical experience shows that the threshold can be set relatively

1Of course, we may define a hop size thus ignoring some frames between them.
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easily. The difference in distance between shot boundaries and inner-shot frames
is usually significant.

ε0

ε1

Figure 15.4: Twin Comparison Principle.

A similar approach can be employed for the detection of fades and wipes.
Figure 15.4 illustrates the principle. Fades and wipes are characterized by the
fact the neighboring frames that belong to different shots are mixtures of the
content of these shots. In consequence, the differences between pairs of frames
are smaller than in the case of wipes and cannot be detected by the threshold ε0
alone. However, the distances are usually larger on shot boundaries that within
the shots. The left side of Figure 15.4 illustrates this fact. The leftmost peak is
a typical cut. Then, after a few frames the distance rises and stays significantly
higher than before. We assume that the group of frames with the more than
average distance represents a fade or a wipe. A second threshold ε1 is introduced
that has to be set to be above normal distances and below inter-frame distances
that are typical for fades and wipes. As soon as the distance is beyond ε1 it is
aggregated until it returns below the threshold. Then, the sum of distances is
compared to the threshold for cuts ε0. If it exceeds the threshold we assume a
fade/wipe shot boundary in the middle of the sequence of frames.

This approach is named twin comparison because it makes use of two thresh-
olds. The aggregated sum stands for the length of the fade/wipe operation. Ob-
viously, the recognition rate stands and falls with the careful setting of threshold
ε1. If it is set too low, frames with high motion within shots are falsely clas-
sified as shot boundaries. If it is set too high, relevant shot boundaries are
not detected. The practical application includes the tuning of the thresholds
which have to be set for each type of content (type of video, illumination, etc.)
individually.

For the understanding of temporal segmentation it is important to be aware
that the threshold-based methods can be employed on image descriptions of
almost arbitrary content. The frames may or may not be summarized by regions,
edges, histograms or moments. Their similarity can be measured as distance or
by any other regression method. The resulting scores can be made subject to
threshold-based quantization or some other form of binary categorization. That
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is, temporal segmentation is in fact an application of visual media understanding.
The output is fed back into the system as a semantically richer input.

One approach of particular importance exploits the motion vectors today usu-
ally available in compressed digital video. The motion vectors are, for example,
quantized by a bags of features method and the resulting histograms are used for
distance comparison. One approach could be to assume a shot boundary where
medium-sized motion vectors are missing but where zero-length and very long
motion vectors exist in abundance. Such data would indicate the breakdown of
macroblock comparison which should usually appear at shot boundaries.

A second important add-on to temporal segmentation is to use knowledge
about the production process as additional input. Such information may be
fed into the categorization process that follows the distance measurement. In
the simplest case, thresholds are tuned to the particularities of certain content
types. In more sophisticated scenarios a ground truth can be employed to train
a probabilistic model. Hidden Markov models are frequently used for temporal
segmentation. This model can then be used for probabilistic inference from
frame differences to belief in shot boundaries. Furthermore, an iterative process
could be implemented that compares frames first on a coarse level and then likely
shot boundaries on finer levels (like in a scale space).

It is not uncommon that state-of-the-art temporal segmentation algorithms
reach an accuracy of 99 per cent and more. The major difficulty lies, as men-
tioned above, in the detection of wipes which are in many areas only of minor
importance. If the same type of wipe is used repeatedly and the model is known,
however, even wipes can be detected with relatively high accuracy.

Temporal segmentation is the localization step in motion description. Even
for the elementary description methods discussed in the last section, background
subtraction and motion activity, it makes sense to apply the algorithms on the
shot level and not over shot boundaries. Furthermore, shot boundary informa-
tion can be employed for aggregation, i.e. the representation of motion activity
in a shot by mean and standard deviation. In the next section, we introduce a
general concept for motion representation in shots which is a generalization of
the motion vectors used for video compression.

15.3 Computation of Optical Flow

The key to the motion in video is the optical flow. The term refers to a cloud
of vectors that represent the object movement between two frames. Optical
flow may be computed for entire images, regions of interest, segmented objects,
etc. The cloud may comprise one vector per sample, one vector per object or
just one global motion vector. Optical flow may be a motion feature in its own
right but it may as well be used to compute simple and sophisticated motion
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descriptions. For example, motion activity can be based on optical flow as well
as on background subtraction.

In this section we introduce the fundamental scheme of optical flow computa-
tion. Along the steps we explain the methods mainly used for flow computation
as well as important exceptions that have been introduced in recent years. Three
general approaches to optical flow computation can be distinguished.

• Gradient-based methods aim at identifying the most likely movement of a
region of interest by similarity measurement.

• Energy-based methods compute the dislocation of an object of interest by
energy minimization similar to the active contours approach.

• Spectral methods use the properties of certain integral transforms to com-
pute a global optical flow.

As representative for the first group we introduce the Lucas-Kanade approach
that combines neighborhood search with aggregation by regression. The energy-
based methods are represented by the Horn-Schunck approach already defined in
the 1980ies. Eventually, spectral methods are represented by phase correlation,
an effective method that makes use of the properties of the Fourier spectrum.

Before we look at the details of the three groups of optical flow computation
methods we would like to emphasize the general similarity between motion vec-
tors and gradient computation. Without naming it we introduced the gradient
already in the first part of the book when we discussed edge extraction by the
Sobel operator. From the delta values δx, δy obtained by convoluting the Sobel
matrices for horizontal and vertical over an image point and its neighborhood
we can compute magnitude and orientation of the gradient as follows.

f1 =
√
δ2
x + δ2

y (15.1)

f2 = arctan
δy
δx

(15.2)

The same descriptions can be used to represent luminance gradients in the
neighborhood of local interest points. The SIFT algorithm, for example, builds
its point descriptors from such gradients. Motion vectors can be represented by
the same scheme. As we already explained in the last section, the displacements
δx, δy describe object movement over time. The computation uses neighborhood
similarities like in the case of gradients. Hence, why not representing motion
vectors by magnitude and orientation? In particular, the latter description ele-
ment can quickly be aggregated to high-level descriptions as those described in
the next section.
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Figure 15.5: Computation of Motion Vectors ( c© CNBC ).

Figure 15.5 shows a typical optical flow for a region of interest. Within the
larger white rectangle we compute the displacement vectors from the left frame
to the right frame (approximately two seconds later). The result includes the
motion vectors depicted in the middle. The aggregation of these vectors defines
the optical flow of the region of interest. As an example, the flow vector for the
nose tip is emphasized. Due to head movement of the anchor person this motion
vector points to the bottom right. The magnitude is small.

If we employ a gradient-based method for the computation of such optical
flow, the following steps have to be taken for two video frames o1, o2.

1. Localization of o1 into regions.

2. For each region do:

(a) Extract each region as a template.

(b) Define a search neighborhood θ(o2, lo1 , ε) in the second object.

(c) Perform convolution for each location in this neighborhood.

(d) Select the location with the highest similarity as the most probable
match for the template and compute the temporal gradient (motion
vector) as described above.

3. If necessary, average neighboring motion vectors by some statistical method.

Figure 15.6 shows a typical result for two frames. As can be seen, most
motion vectors are short, which indicates no or small movement. In the region
of the anchor person larger movements are visible which include also some false
hits, i.e. semantically incorrect matches.

In this example, the third step is only executed on the level of macroblocks
and linear regression is employed for the computation of average motion vectors.
This proceeding is equivalent to the Lucas-Kanade approach. It uses negative
convolution (based on the city block metric) in the template matching step.
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Figure 15.6: Lucas-Kanade Optical Flow Example. The figure was created using
the algorithm provided by Sohaib Khan [190] ( c© CNBC ).

Hence, similarity is operationalized as inverse distance. Moreover, macroblocks
are used as regions.

It is important to note that in the gradient-based approach several aspects
are variable. Regions may be as small as samples or as large as the entire media
object. The neighborhood may be as small as a Moore neighborhood or as
large as a frame. Similarity can be defined by the inner product as well as a
distance measure. Aggregation may not be performed at all or even globally
by computing the median of the flow vectors of all samples. Characteristic
properties of the gradient-based approach are neighborhood search and selection
by maximal belief.2

The Horn-Schunck method computes a global optical flow vector with param-
eterized components f = [fx(x, y), fy(x, y)] for two frames o1, o2 by minimizing
the following energy model.

∑
l∈L(o1)

(
δlxfx + δlyfy + δlt

)2

+ α2
(

size(fx)2 + size(fy)2
)
→ min (15.3)

Here, δlx is the change of intensity in direction x at location l (equivalently
defined for dimensions y, t) and α is a weight for the smoothness of the global
flow vector. The energy model expresses that the variance of intensity present
in the frames (first term) should be matched by the flow vector (tuned by α).
The actual minimization is usually performed iteratively over all locations l
individually by solving the two Lagrange equations that can be derived from the
optimization criterion.

δlx(δlxfx + δlyfy + δlt) = α2(µx − fx) (15.4)

δly(δlxfx + δlyfy + δlt) = α2(µy − fy) (15.5)

2This large set of options may be seen as an example for the curse of dimensionality.
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Above, µx is the average for fx in a neighborhood around l. The other vari-
ables are defined as before. The two equations show nicely the tension between
intensity changes over space and time and the flow vector components. Since
each location l is influenced by its neighborhood which in return consists of loca-
tions with a neighborhood that includes l, the solution for f can only be gained
iteratively. That is, f is approximated over time by computing the best result
for each location, re-computing the neighborhood values, and so on. A case of
expectation maximization. The exact definitions of the necessary equations can,
for example, be found in [208].

The last method that we would like to sketch in this section is phase corre-
lation, a global method that employs spectral transformation. The algorithm is
very simple.

1. Compute the Fourier spectra for the two given frames o1, o2.

2. Compute the crosscorrelation of the spectra by positive convolution: χ =
ft(o1).ft∗(o2). Here, ft∗ stands for the complex conjugate of the complex
Fourier spectrum.

3. The location l of the optimal direction for the flow vector can be determined
by identifying the maximum in the back-transformed correlation: f =
arg maxl ft−1(χ).

The idea behind the algorithm is that a shift over two frames (movement)
where only little information is lost at the borders results in Fourier spectra that
will have maximal correlation at the frequencies that remain the same. Thus, the
crosscorrelation operation needs only be performed once in the spectral domain.
In sample space, the operation would have to be repeated over every possible
location where a shift could happen.

The presented methods are only three – frequently used – examples for optical
flow algorithms. More can, for example, be found in [208]. Often, optical flow
algorithms are classified as either local or global. The Lucas-Kanade would be
a typical local approach. Horn-Schunck and phase correlation would be typical
global approaches. However, in practice this differentiation is only of minor
relevance. The latter two methods can, of course, be combined with regions
of interest or other localization methods. On the other hand, gradient-based
methods can be extended by aggregation or coarse representation.

Optical flow may be used as the basis for more-sophisticated descriptions
(see next section) but sometimes it is also employed as a description in its own
right. The author, for example, supervised experiments where Lucas-Kanade
optical flow vectors where used for violence detection in videos. It turned out
that statistical moments of this type of optical flow are highly expressive in this
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context. In fact, the flow moments outperformed all of the state-of-the-art audio
feature transformations (MFCC, LPC, etc.).

In conclusion, movement between video frames can be captured by a field of
motion vectors named optical flow. Several methods exist for flow computation
of which gradient-based, energy-based and spectral are three important groups.
In the final section we discuss feature transformations for the description of
movement-related concepts that are based on optical flow.

15.4 Flow-based Motion Descriptions

Below, we describe two fundamental types of flow-based motion descriptions:
camera motion and motion trajectories. In the first case, motion is assumed to
origin from movement of the camera. In the second case the origin is assumed
to be object movement. Hence, camera motion describes global movement while
motion trajectories describe local movement.

First, however, we would like to discuss flow-based motion activity. Above,
we already mentioned that motion activity can be based on the motion vectors
that are part of compressed video. In the same way, an optical flow can be
used to estimate the degree of motion in a video. The fundamental problem is
similar to texture description in images. Motion activity can be described in
terms of coarseness, regularity and directionality. The first attribute refers to
the global/local distinction. A coarse optical flow, i.e. large groups of vectors
pointing into the same direction, indicates object movement while the opposite
indicates camera movement. Regularity measures whether or not all flow vectors
have the same gradient properties (length, direction). Eventually, the direction-
ality can be seen as the average direction. As for textures, these three properties
can be measured by statistical moments drawn from the flow field. For example,
the variances of vector lengths and directions are measures for regularity while
the means are measures for directionality. A motion activity descriptor could
aggregate these measures over time (for example, one set per shot).

Camera motion is an important aspect of some types of video. For example,
in feature films camera movement provides relevant cues on the types of scenes
(e.g. action, romance). In other types of video, camera motion is of little or no
relevance (e.g. documentaries). The existence of camera motion can be used to
discriminate between these (and other) types of video scenes.

Camera motion detection based on optical flow is usually based on a region
of interest concept. Figure 15.7 shows a typical example. Regions like c are
considered highly expressive for the detection of camera motion. Regions like a
are usually ignored. Regions of type b are somewhere in-between a and c. The
reason is that in most videos the focus of attention is in the center of the image.
Most relevant events happen there. The background is almost invisible in this
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a)

b) c)

Figure 15.7: Camera Motion Detection Examples.

region. In contrast, regions of type c are typical background regions that can be
used for the detection of camera motion.

The model of flow-based camera motion detection is very simple. We try to
identify if the background moves from frame to frame in a regular way. The
directionality of this movement reveals the type of camera motion. For example,
the left element of Figure 15.7 shows motion vectors in the background regions
that point uniformly to the right thus indicating a pan to the opposite direction,
i.e. to the left. In the same way, zoom and other camera operations can be
detected. For example, the right element of the figure shows motion vectors
that point to the center region a which indicates a zoom out operation. That is,
samples move towards the center of the picture because the focus of the camera
is widened.

The central problem of camera motion detection from optical flow is estimat-
ing the average direction of the flow field and judging the belief in this direction.
Next to the statistical methods named above, one very nice approach is based
on the Hough transform (see Chapter 12). The Hough transform can be used
to build a histogram of the gradient magnitudes and directions of the motion
vectors in the regions of interest. The directionality can then be identified by
peak detection in the histogram. Furthermore, interpreted as a density func-
tion, the neighborhood of the peak can be employed to estimate the belief in
this direction. The more outstanding the peak, the higher the belief.

Motion trajectories describe object movement over time. Optical flow is the
natural ground for the aggregation of motion trajectories. In fact, the flow can
already be used to segment objects from their background. For example, if a
group of motion vectors points constantly into the same direction we can assume
that the samples/regions represented by these vectors belong to the same object.
The motion trajectory describes the two-dimensional movement of such objects
over time. It is, therefore, a local description that can be computed by methods
similar to those used for shape description.

In its simplest form, a motion description can be the aggregate of individual
motion vectors over time. Such a trajectory would be edgy and probably con-
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tain a significant amount of noise. A more sophisticated approach will perform
aggregation on the levels of the sample as well as the flow vectors. The first goal
is achieved by the definition of regions of interest such as the before-named ob-
jects. Of course, more sophisticated object recognition methods such as template
matching, edge detection or energy models can be used instead or in addition.
Furthermore, the entire process can be based on interest points instead of ob-
jects. Methods such as SIFT can be used for blob detection. Aggregating over
samples requires averaging the flow vectors of their composition. For this end,
all statistical methods (moments, regression, etc.) can be used. The aggregation
serves as a noise filter that increases the belief in the flow vectors.

Time

Figure 15.8: Approximation of a Motion Trajectory.

Eventually, the temporal aggregation of individual motion vectors can be
improved by smoothing and averaging methods. Figure 15.8 shows an example.
The arrows show a hypothetical motion trajectory which is relatively edgy. Two
smoothing methods compute a simple trend line (dashed line) and a moving
average (dotted line). The parameters of these approximations can be used as
descriptions. Alternatively, we can try to fit a pre-defined model to the data.
For example, we could define a polynomial function and adapt it to the edgy
flow by an expectation maximization strategy. In the first step, the parame-
ters of the function are guessed. Then, the gap (error) to the actual values is
computed which leads to refinement of the parameters, and so on. In a similar
fashion, energy-based models such as active contours could be used for template
matching. In the third part of the book we will introduce the Kalman filter that
is frequently used for such approximation problems.

It has to be noted that the major problem in the definition of motion trajec-
tories is the sheer size of the data. Videos (for examples, from surveillance) can
contain many objects that have to be followed over long periods of time. Com-
puting a high-quality optical flow is already a resource-consuming task. Trans-
forming this flow into smooth trajectories adds another costly task. Therefore,
it is advisable to keep the flow computation algorithm and the approximation
algorithm as simple as possible. Often, gradient-based methods without averag-
ing are used in combination with simple statistical averaging of the trajectories.
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The mass of such data can be employed to estimate the paths of walking people
as well as the detection of gestures, kinematic motion, etc.

Most motion features can be made subject to categorization like all other
media descriptions. For motion trajectories, however, we would like to point
out the relevance of dynamic association models (discussed in the first part of
the book). Measures like the Hausdorff distance fit naturally to the problem
of motion trajectory comparison. Categorization can be performed by a micro
process that compares the motion trajectory of interest to a reference that is
associated with some human label (e.g. a particular type of gesture). In the
same way, motion trajectories can be averaged in order to reduce the complexity
of the categorization problem iteratively.

In conclusion, motion descriptions solve the particular problem of video de-
scription. Generally, they help to reduce the semantic gap problem, because
motion is a visual cue on a relatively high semantic level. The presented fea-
ture transformations are able to extract this property considerably well. On the
negative side we have the bad computational performance of motion description
methods which is due to the large amount of data and the complexity of the
feature transformations. Computing a smoothed optical flow is state-of-the-art
in motion description and the foundation of many motion descriptions.

In Chapter 21 we will reflect the feature transformations discussed in the first
and second part of this book and emphasize the current state-of-the-art methods.
We will see that optical flow feature transformations are among these methods.
In the next two chapters, however, we make – as in the first part – the tran-
sition from media summarization to categorization by first discussing advanced
information filtering methods and then stating the categorization problem in a
more general way than in the first part.



Chapter 16

Advanced Filtering Models

Lists the principal solutions for the data fusion problem, introduces several meth-
ods for feature selection, discusses methods for the smoothing of feature spaces
and introduces advanced methods for redundancy elimination.

16.1 Fusion of Descriptions

This chapter continues the discussion of information filtering methods started
in the first part. It serves as the transition between the block of chapters on
feature transformation and the chapters on categorization of descriptions. In-
formation filtering servers several purposes – all of which targeted at improving
the feature space created from media content by the various feature extraction
methods. The major goals of information filtering are merging of descriptions,
selection of the optimal subspace of feature space for categorization, smooth-
ing of feature space and redundancy elimination. In the first part, we came
across redundancy elimination by factor analysis, smoothing by normalization
and merging by concatenation. This chapter provides additional methods for all
of these areas. Furthermore, it discusses description merging and feature selec-
tion systematically. The first and second section of the chapter deal with these
two problems. Section 16.3 introduces a number of smoothing methods that help
to remove noise from feature space. The last section takes up the factor analysis
thread and introduces several methods that are similar to principal component
analysis.

This section deals with the fusion of – possibly – heterogeneous media descrip-
tions. In the first part we introduced simple merging of descriptions with fixed
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length and suggested recipes for the transformation of variable-sized descriptions
to static ones. Below, we embed this approach in a framework of description
fusion methods. As we will see, merging can be performed on different levels
and the selection of the appropriate method depends on the circumstances of
the media understanding problem.

We first introduce the general model of description fusion, give an example
for the domain of text understanding and, eventually, introduce a set of rules
for choosing the right method.

Video

Color
Extraction

Texture
Extraction

Motion
Extraction

Description 1 Description 2 Description 3

Histogram
Intersection

Bayes
Classifier

K-Means

Classification

Label 1 Label 2 Label 3

Early
Fusion

Late
Fusion

Hybrid
Fusion

Figure 16.1: Description Merging Principles.

Figure 16.1 illustrates a media understanding process for video data where
three feature transformations are used to summarize the media content. Gener-
ally, three options exist for the merging of the individual descriptions.

• Early fusion (also known as feature level data fusion and merging)

• Late fusion (also known as decision level fusion and classifier fusion)

• Hybrid fusion

Early fusion is performed directly after feature extraction. The merging pro-
cess is usually based on concatenation of the description elements. As explained
in the first part, this approach requires that the descriptions are of fixed length
– a condition seldom met in video understanding, for example. If descriptions
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are not per se static they have to be transformed adequately. In the first part
of this textbook we suggested, for example, statistical averaging. Alternatively,
some quantization method can be employed for coarse representation by a fixed
number of description elements. Localization to a static number of windows is
also an option. Aggregation methods like the bags of features approach can be
used in a similar fashion as quantization methods. Eventually, in the third part
of the book we will encounter dynamic filtering methods that can be used to
create convergent static descriptions (e.g. the Kalman filter).

Late fusion is performed after categorization. That is, the media understand-
ing process is performed multiply and each description is transformed into a class
label by an individual classifier. This method has several advantages over early
fusion. First of all, it can be applied on all types of descriptions. Their length or
variability is only an issue if the classifier is limited to particular configurations.
This aspect is hardly relevant in practice, since late fusion allows to select tailor-
made classifiers for descriptions. A second advantage is the implicit semantic
enrichment reached by multiple categorization processes. On the negative side
stands the bad performance of late fusion processes which is due to two facts.

1. It requires, usually, more resources to train n classifiers for smaller sets of
data than one classifier for a larger feature space. This drawback does not
count for categorization methods that have no training step, because these
usually perform complex distance measurement on the micro level which
is typically of over-linear complexity. In this situation, late fusion leads to
a divide-and-conquer gain in performance.

2. Individual categorization is not sufficient to clarify the semantic judgment
of the media data. A second iteration is required to infer the final class
label from the group of intermediate labels.

Hybrid fusion covers all approaches that mix early fusion with late fusion.
This includes all situations where static descriptions are merged and all non-
static parts are classified individually before their labels are added to the static
feature space.

Figure 16.2 shows an example for hybrid fusion from the area of text infor-
mation retrieval. A text is analyzed by three feature transformations. On one
hand we analyze the structure of sentences. Furthermore we count the words
and build a bags of words histogram. Eventually, we build all trigrams on the
word level and count their frequency of appearance. The latter two descrip-
tions deliver histograms of fixed lengths. They can, therefore, be merged on
the description level without any loss of precision or generality. The sentence
analysis delivers models with a complexity related to structure of the input data.
It makes sense to categorize the sentences individually, for example, by hidden
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Figure 16.2: Merging of Text Descriptions Example.

Markov models. The resulting class label(s) can be merged with the result of
the classification of the static description elements.

Which fusion method should be used when? Practically, if nothing stands
against early fusion by merging this method is preferable from the others for
the following reasons. Merged descriptions form one static feature space which
can be made subject to further information filtering, in particular, redundancy
elimination and smoothing. This refinement process can also be applied to de-
scriptions separated for late fusion – but only within the separated data not over
the entire space. This aspect must be considered a significant drawback of late
fusion.

If the variability in the data is limited (for example, slight variations around
a well-perceivable mean) it is recommendable to transform variable descriptions
into static ones and perform merging for the benefits listed above. Otherwise,
late fusion has to be performed, which is also the method of choice if certain
parts of feature space require certain categorization methods. Furthermore, if
the media understanding process is anyway embedded in an iterative refine-
ment process it is probably preferable to perform late fusion than to sacrifice
an amount of precision to averaging. Another discrimination criterion lies in
the nature of the descriptions. In the first part of the book we introduced the
distinction into integral and separable stimuli (see also Chapter 28). The first
are usually made subject to distance measurement while the latter require more
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sophisticated categorization. It is, therefore, reasonable to merge all integral
stimuli early and to perform late fusion for the separable stimuli. In summary,
the choice of method depends on the circumstances of the media understanding
problem – and the experience of the experimenter.

Description fusion is a small yet important step in successful media under-
standing. Early and late fusion are the principal approaches. Hybrid fusion is
the practical solution for multimodal applications. However we construct the
feature matrix, it may be that not all description elements help the understand-
ing process. In the next section we review methods for the selection of good
description elements.

16.2 Selection of Description Elements

Before we enter categorization, we always have to answer the question whether
or not all description elements help the discrimination process. No matter how
clever the feature transformations have been designed, some description elements
will either be redundant with others or even contradict the general picture. The
selection of description elements (more frequently, feature selection) aims at
eliminating the latter type of description elements. In this section we first in-
troduce the general algorithm of feature selection. Then, we discuss specific
algorithms that have proven successful, in particular, greedy approaches and an-
nealing. We will see that important ingredients of feature selection algorithms
are optimization criteria and measures for evaluation.

Feature
Space

Description
Selection

Active
Selection

Evaluation

Selection
Refinement

Figure 16.3: Description Element Selection Principles.

Figure 16.3 is the big picture of feature selection. The process operates
on one feature space. If late fusion is used in the media understanding process,
feature selection has to be performed – if necessary – once for each feature space.
Naturally, the feature space will be of considerable size, since it is the purpose
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of feature selection to reduce the curse of dimensionality as well as optimizing
the shape of the descriptions.

The first step in the process is the selection of a subspace of feature space.
Initially, this may be one description element, the entire space or some subset in-
between. The selection is performed along the axis of the description elements.
For each element all samples are taken. The chosen description elements form
the active selection which is made subject to evaluation.

In the evaluation step, we judge the quality of the active selection. The
definition of quality depends on the task. In media understanding, quality mea-
surement usually implies performing categorization and evaluation based on the
ground truth associated with the active selection. The result of such evaluation
(often, the scores) are, for example, recall and precision values. Feature selec-
tion is also employed in other areas such as statistical approximation of data,
for example, for noise elimination. Then, it is common to use statistical testing
for evaluation (e.g. the t-test).

The result of evaluation is used to refine the active selection. Typical refine-
ment operations include adding one more dimension from feature space to the
active selection or removing a description element. The decision making is based
on comparing the score to some pre-defined threshold. In media understanding,
we could, for example, continue to add description elements to an initially empty
active selection until the F1 score of recall and precision is above 0.4 or the active
selection matches the feature space. In statistics, typical thresholds are

√
2 or√

log n of the t-value (n being the number of samples).
Several schemes have been proposed for feature selection, of which we would

like to explain the following.

• Exhaustive search

• Forward feature selection

• Backward selection

• Selection by a genetic algorithm

Exhaustive search is a näıve approach that tries every possible combination
of description elements as active selection. Obviously, exhaustive search can only
be applied to very small feature spaces. Since the entire idea is irrelevant for
such small spaces, exhaustive search is only a theoretical option.

Forward and backward feature selection are illustrated in Figure 16.4. The
circles represent description elements. The color indicates their individual score
(darker is better), which has to be computed in the initial description selection
step. The left parallelograms stand for feature spaces, the right ones for the
active selections. Ideally, forward selection fills the initially empty active set
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Forward

Backward

Figure 16.4: Greedy Forward and Backward Selection.

with the most relevant description elements. The process breaks off where the
evaluation score exceeds the quality criterion.

Obviously, forward selection is a greedy algorithm. It will usually not as-
semble the best possible active selection, because joining the best individual
description elements is no guarantee for an overall expressive description. One
reason behind this fact is that, often, the most relevant description elements
are highly redundant, while less relevant description elements add an interesting
new aspect to feature space. The latter elements are often ignored by forward
selection, because they do not meet the quality criterion.

Backward feature selection, no surprise, reverses the forward selection pro-
cess. Initially, the active selection equals the feature space. The iterative process
removes those description elements with the smallest relevance from the set until
the break-off criterion is met. Backward selection is as greedy as forward selec-
tion and, therefore, has the same advantages (good performance) and drawbacks.
The major difference between the two method lies in their application. Forward
selection will be used where we believe that a set of description elements is highly
redundant, i.e. the lot can be expressed by a few representatives. Backward se-
lection, in contrast, is in place where the variance of the description elements is
distributed more uniformly. It is employed for eliminating misleading description
elements.

Forward and backward feature selection are related to cluster analysis. For-
ward selection can be implemented as a form of agglomerative clustering where
distance measurement is replaced by score computation. Backward selection
resembles divisive clustering. Elements with large distance to the others (bad
evaluation scores) are removed from the data set.

Eventually, we would like to point out the importance of optimization al-
gorithms, in particular, operations research methods for feature selection. It is
obvious that the selection problem is an optimization problem ideally suited for
optimization algorithms such as simulated annealing and other gradient-based
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methods. However, the problem may be even more appealing for the application
of a genetic algorithm (GA) because problem and solution share a number of
properties. Firstly, GA are made for the evaluation of an entire gene pool which
is similar to evaluating the entire active selection at once. Secondly, the crossover
operator expresses a kind of respect for previously identified combinations which
is similar to the accumulating role of the active selection. Eventually, the mu-
tation operator increases the chance that otherwise neglected options enter the
gene pool without a particular justification.

In Chapter 19 we discuss relevant global optimization methods including GA
in detail. A practical implementation of a GA-based selection algorithm could
comprise of the following components.

• The gene strings could be binary strings with length equal the number
of description elements. Thus, 1 would stand for element of the active
selection, 0 otherwise.

• Since we use a standard binary genome, standard mutation and crossover
operators could be employed for breeding. Mutations could, for example,
be restricted to three per cent of the number of genes per iteration.

• The evaluation function could be a process of categorization and score
computation where proper classifiers and evaluation criteria are used.

• The quality criterion for breaking off the search could be combined with
a maximum number of iterations for breeding in order to guarantee a
minimum of performance.

It has to be noted that the property of GA that a gene pool can (and will)
degenerate from a local optimum, is an important advantage of this approach.
It allows for escaping from local optima and building up a better solution. The
starting impetus for escape is introduced by mutation.

A number of powerful tools exist for the practical implementation of feature
selection. For example, Weka [378] and RapidMiner [137] can be used to perform
various forms of feature selection. It makes sense to use multiple strategies for
reaching a close-optimal selection result.

In subsequent chapters we will encounter various powerful methods for eval-
uation that can be employed for feature selection. For example, in Chapter 20
we will introduce cross validation, a method that is state-of-the-art in greedy
feature selection. In the same chapter we will discuss canonical correlation anal-
ysis which can likewise be employed on media understanding problems and on
statistical problems.

In conclusion, feature selection is done for reducing the number of descrip-
tion elements in feature space. Goals are the reduction of redundancy and the
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elimination of description elements that contradict the semantic meaning ex-
pressed in the description elements. The toolbox of methods includes all sorts
of optimization algorithms. Of outstanding practical importance are the greedy
search algorithms. Feature selection helps to reduce the dimensionality problem
of media understanding and, in consequence, improves its performance.

16.3 Weighting of Description Elements

Before we conclude this chapter with advanced methods for redundancy elimi-
nation we would like to widen our view of normalization methods. In the first
part we introduced a few approaches for global adaptation such as scaling to
an interval and standardizing mean and variance. One idea that goes beyond
this scheme is smoothing of description elements. Another is the exact opposite,
emphasizing outstanding values in a description and suppressing others. These
two principles are discussed in this section.

Ideally, we stated in the first part, a description element should have uniform
distribution. Practically, this is hardly ever the case. In the visualization section
we saw how odd most distributions of description elements look like. This is
partially due to the failure of any sample to represent reality appropriately.
On the other hand, however, imperfect feature transformations also have their
share. Whatever the fundamental distribution is, the edgyness of the practical
manifestations is disadvantageous for the categorization process. For example,
a Gaussian Bayes classifier assumes conditional probabilities to be Gaussian. If
they are not, the performance of the method lags behind the optimum. The
purpose of re-weighting is to make edgy distributions of the values of description
elements as smooth as possible.

The general idea is – as often – simple. Figure 16.5 illustrates t. In the
first step we build a histogram of the values of the description element under
consideration over all samples. Then, the histogram is compared to all relevant
types of distribution and parameterization (Gaussian, uniform, etc.) – for exam-
ple, by statistical testing. The closest match is chosen as the likely distribution.
Eventually, smoothing is performed by first approximating weights from the dif-
ferences between real and ideal distribution for the bins of the histogram and
then, weighting of the values in feature space.

This very simple scheme can be replaced by a number of methods. Generally,
this sort of smoothing is a template matching problem. It could, for example, be
stated as an energy minimization problem and solved accordingly. Furthermore,
the histogram may be interpreted as a trajectory with the implication of using
comparison algorithms from this domain, etc.

The second issue is emphasizing certain values of a description element and
blankening others. The reasons to do that can be manifold. For example, hu-
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a)

b)

Figure 16.5: Description Weighting Examples.

man perception is in many aspects mostly attracted by outstanding values (high
curvature, peaks, etc.) which justifies emphasizing such values. In his publica-
tion [275], Murdock points out that emphasizing some values on a scale for the
sacrifice of others is a general property of human understanding. He calls this
property distinctiveness and argues for its fundamental difference from similar-
ity perception. He concludes, that both aspects – distinctiveness and similarity
– influence human perception mechanisms. It is, therefore, advisable to consider
distinctiveness in media understanding.

before

after

Figure 16.6: Distinctiveness Measure Example.

Murdock defines a measure for the optimization of distinctiveness for a de-
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scription element f in a human-like manner as follows.

f̄i =

∑
j 6=i |fi − fj |∑

k fk
(16.1)

The iterators j, k go over all samples. That is, the similarity of the value
under consideration is weighted on the basis of its difference to all other values.
Figure 16.6 shows the result. High values are increased, low values are decreased.
The overall distinctiveness is enlarged.

The distinctiveness concept is related to a number of other ideas. If we
assume the description element f to be a probability distribution, the effect
of the measure becomes very similar to the Kullback Leibler divergence (Q5).
Generally, the measure may be seen as an interestingness measure. Since these
measures are related to evaluation measures, we will discuss them in Chapter
20.

We conclude that for the benefit of feature space a number of different nor-
malization and weighting procedures can be applied. If it helps the categoriza-
tion process we can smooth the data. If more discrimination is required we can
also perform the opposite operation. Both operations may introduce new lev-
els of redundancy in the data. Therefore, in the last section we return to the
fundamental problem of redundancy elimination.

16.4 Advanced Redundancy Elimination

This section continues the discussion started in the first part of the book. Start-
ing at factor analysis we introduce a handful of similar methods, including sin-
gular value decomposition, independent component analysis and the Isomap
approach. Eventually, we discuss the outcome of redundancy elimination in the
light of categorization. Is the maximization of variance in few variables really
the best option for media understanding?

The main difference of this section to the methods introduced in Section 16.2
is that selection is based on ground truth while redundancy elimination ignores
class memberships. Here, we use statistical approaches for the redistribution of
variance in feature space. Semantic aspects are not considered – which can be
seen as an advantage or a disadvantage, depending on the point of view.

Singular Value Decomposition (SVD) is a redundancy elimination technique
closely related to factor analysis. The hypothesis is the same: We believe that
the present variables (description elements) are linear combinations of a smaller
set of factors. We aim at extracting the yet unknown factors and replacing the
variables by them. The hypothesis can be stated as follows.

F = X.Σ.Y ′ (16.2)
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F is the feature space, X,Y are two matrices that contain in the columns the
left and right singular vectors. Σ is a diagonal matrix of singular values. Please
note that, generally, Y ′ would stand for the adjoint matrix of Y , i.e. the matrix
gained by transposing Y and computing the complex conjugate of each entry.
Since we usually do not have complex numbers in feature spaces, we can neglect
the second step.

The singular values can be interpreted as the factors while the matrices X,Y
provide the link to the original data. As in principal component analysis, not all
factors will be used to describe the data. We will rather use only the strongest
singular values as an approximation of F .

SVD is usually performed by a heuristic. In the first step, F is transformed
into a bidiagonal matrix. That is a matrix where the main diagonal and the next
diagonal above are filled. This operation can be performed using Householder
reflection. From the bidiagonal matrix, Σ, X, Y can iteratively be approximated
by expectation maximization. Guessed values are compared to F and the error
is used to refine the model. The approximation can be broken off as soon as the
global error sinks below a pre-defined threshold.

Singular value decomposition is closely related to principal component analy-
sis. If F is quadratic (which is hardly ever the case in media understanding), the
singular values are squared Eigenvalues. The major advantage of singular value
decomposition over principal component analysis is the used approximation,
which can be computed more efficiently than solving the Eigenvector problem.

Description

SVD

Semantic
Description

Categorization

Class

LSI

Figure 16.7: Latent Semantic Indexing by Singular Value Decomposition.
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Figure 16.7 shows a typical application of the singular value composition.
Latent semantic indexing is, for example, used in text understanding. The
factorization is used to create so-called semantic descriptions which are then
categorized into classes. Of course, the argumentation that redundancy elimi-
nation alone would lift low-level descriptions such as n-grams to a semantically
higher level is rather adventurous. Being no longer able to understand and in-
terpret the descriptions does not mean that they have a more specific context
– rather the opposite. Still, latent semantic indexing is used frequently for text
understanding with acceptable results.

Source 1 Source 2

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Figure 16.8: Independent Component Analysis Hypothesis.

The second approach to consider here is Independent Component Analysis
(ICA), a blind source separation method. We encountered already the cross-
spectral density, a source separation tool, in Section 13.2. Source separation
assumes a signal to be a mixture of components. The goal of the operation is
the differentiation of the components. Source separation is called blind if – like
factor analysis – it does not make use of additional knowledge. This model is,
as can be seen from Figure 16.8 identical to the factor analysis model. The only
difference is that the factors are called sources in ICA.

ICA works on the vector level. For a given description f , the general approach
can be formulated as follows.

f = X.λ+N(0, σ) (16.3)

Here, λ is a vector of sources (factors) while X contains the weights that
define the linear relationship between sources and signal. The second term is an
optional noise component. The goal of ICA is to identify X,λ that explain f well
and keep the components of λ maximally separated. The typical solution uses
– like in principal component analysis – Eigenvectors and Eigenvalues to guess
the unknown components as well as expectation maximization to approximate
a good solution.

ICA is often used in biosignal understanding. For example, ICA can be
employed to approximate the components of an EEG signal. In the first part
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Time

Figure 16.9: Wiener Process Example.

we emphasized that one electrode covers a large number of neurons. ICA can at
least be used to difference the input coming from different regions. Furthermore,
it can be used to eliminate noise components such as breath. In stock analysis,
ICA is used to separate systematic from unsystematic sources. Figure 16.9 shows
a typical stock signal. The fundamental components of this Wiener process can
be separated into a low-frequency ascend in the first part, stagnation in the
second (systematic) part and a high-level noise component (unsystematic).

Subspace analysis is a special form of ICA where a signal is assumed to
have two components: a stationary component and a non-stationary component.
Often, the relationship between the two components is assumed constant and
linear, which makes the source separation simpler. Subspace analysis is, for
example, used in EEG analysis.

The last redundancy elimination approach that we would like to explain
is the Isomap algorithm as defined in [369]. This algorithm does not define
a new model for redundancy elimination. It is based on principal component
analysis. Instead, it takes the morphology of a data set into account in the
analysis process. Figure 16.10 illustrates the idea. The data points form a so-
called Swiss roll which is – if the structure is recognized – highly redundant.
The line shows a factorization that expresses the same information as the data
points at significantly lower redundancy.

The Isomap algorithm is able to compute the factors of the illustrated data
set in a four-step process.

1. Build a graph of the data points that connects two data points if they
are close to each other or mutual members of the set of the n nearest
neighbors. The authors of [369] suggest to use one of these two strategies
to build the graph. However, a mixture of both strategies leads also to
interesting results.

2. Weight each edge in the graph by the distance of its two end points. Any
distance function can be employed for this purpose. Of course, if the data
set – like a feature space – is related to human perception, it is advisable to
rely on a similarity model derived from human similarity understanding.
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Figure 16.10: Isomap Algorithm Example.

3. For each pair of points in the graph compute the minimum distance. The
minimum distance may be the direct connection or a detour over connected
nodes.

4. Compute a factor analysis for the resulting graph and use the transformed
Eigenvectors as representatives for the data set.

The first step enables the approach to describe arbitrary data. Neighbor-
hood and structure are exclusively described by similarity/distance. Obviously,
the third step is the major weakness of the approach. Computing the mini-
mum distance between two points is already a non-trivial problem. The Isomap
algorithm, however, requires performing this operation for each two connected
points which makes it computationally highly expensive. Still, the Isomap is an
interesting approach for redundancy elimination in structured data.

Variance

Figure 16.11: Principle of Factor Analysis.

We would like to close this chapter with reflecting the significance of re-
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dundancy elimination for media understanding. Very generally, Figure 16.11
illustrates its effect. Edgy data is transformed into a smooth view that can
be expressed by a small number of values. This way, a significant amount of
redundancy is eliminated and the remaining variance is loaded into few highly
expressive values.

We have emphasized the advantages of this process in the first part and
in this chapter. Efficient data representation and dimensionality reduction are
the outstanding advantages. However, redundancy elimination also has a major
disadvantage. The high-frequency (edgy) components of the feature space may
express important aspects of the media data as well as they stand for noise. Hu-
man perception is able to focus on fragile stimuli and to recognize their potential
importance. If we eliminate the high-frequency components we run the risk of
loosing the most significant source of information.

Practically, this leaves us in a trap with the curse of dimensionality on one
side and the semantic gap on the other. It appear advisable, once again, to
apply the media understanding process iteratively and make use of redundancy
elimination in the first rounds. When the results have been optimized, it may be
worth trying to run it without redundancy elimination, analyze the results and
decide on the inclusion of redundancy elimination in the media understanding
process based on these findings.

In conclusion, the various methods of filtering introduced in this chapter are
designed to improve the performance of media understanding by reducing the
dimensionality problem. By the way, noise should be eliminated as well, and
it is desired that the semantic value of the descriptions should not be touched
by the filtering operations. Whatever the outcome is in practice, the next step
in the media understanding scheme is categorization. The next chapter reflects
the general problem while the two subsequent chapters introduce a number of
state-of-the-art methods for the efficient assignment of class labels.



Chapter 17

Principles of Learning
Machines

Discusses fundamentals of human learning, relates machine learning to the psy-
chological and philosophical insights and discusses selected problems of the micro
process and the macro process of categorization.

17.1 Introduction to Learning Theory

This chapter continues the introduction to machine learning started in the first
section of Chapter 8 of the first part. There, we already outlined the fundamental
model of the categorization process, discussed the related terms class, semantics,
context, introduced references and ground truth as two fundamental types of
training data, emphasized the importance of evaluation by a test set, organized
the categorization process in a micro process and a macro process, and briefly
mentioned the fundamental problem of rigidity vs. overfitting. In this chapter,
we extend the created image by insights gained in psychological science (human
learning process, this section), philosophical models for the description of classes
(next section), a first discussion of human-like similarity measurement (Section
17.3), and practical issues of the application of classifiers (last section). Of the
latter two sections, the first targets at the micro level of categorization while the
second aims at the macro level. The goal of this chapter is to show that machine
learning theory is closely connected to human learning. Most algorithms used for
computational categorization have equivalents in human learning theory. The
quest for the ideal machine learning algorithm may, therefore, benefit from what

315
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we know about human (social) learning.
The present section starts with facts about human learning that lead us to an

ideal learning process. This model can be seen as a template for the practically
used learning algorithms. It is introduced for the benefit of better orientation
in the complex learning methods that are introduced in the subsequent chap-
ters. After the learning process, the discussion continues with the problem of
generalization, which is – located on the micro level – a fundamental issue in
all learning algorithms. The discussion continues with the major learning prob-
lems. Implicitly, we we stated these problems already in the first part, however,
listing them allows to understand their similarities and differences better. Even-
tually, we discuss the fundamental learning approaches, which are determined
by the available training data. In the discussion, we will see that besides the
above-mentioned types of training data others exist that can be used for effective
categorization.

Below, we make sure that all ingredients are provided that are required for
understanding and analyzing the machine learning algorithms introduced in the
next two chapters as well as for the deconstruction of the general categorization
problem into a set of building blocks. In this process, we will, for example,
review the differentiation into hedgers and separators – introduced in Chapter
11 and extend it by the insights gained in this chapter.

Human learning is influenced by many factors. It is proven that age, sex
and personal interests influence the success of learning efforts. The – sometimes,
unconscious – seriousness of the effort has a large impact on our learning be-
havior. So have feelings and emotions. Sympathy, for example, if felt for an
instructor leads to better imitation of the desired behavior, etc. There are many
learning theories, starting from simple behaviorism to social constructivism and
related post-modern theories. The essential factors in learning are repetition
and the usage of multi-medial input. The practical importance of repetition in
learning – which nobody will doubt – was one reason for abandoning the single
neuron doctrine. According to this hypothesis, one neuron would be responsible
for the recognition of a complex stimulus (for example, the grandmother neuron
for the recognition of her face). Since the 1940ies researchers have doubted the
single neuron doctrine. John von Neumann was one of the first to write in The
Computer and the Brain that, rather, distinct patterns of simultaneously firing
neurons represent stimuli. Today, this view is generally accepted. Among oth-
ers, it explains why multi-sensory input helps the learning process. More input
allows better training of the neural spiking patterns.

Figure 17.1 illustrates an ideal learning process. Learning is generally itera-
tive. Therefore, we have a link back from adaptation to the stimulus. Human
learning is driven by stimuli, i.e. some patterns presented to the human senses.
In the first step of learning a mental representation is constructed. For example,
in visual perception the input stimulus is first disassembled into a group of lines
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Figure 17.1: The General Learning Process.

with coarsely quantized lengths and orientations. The mental representation is
then made subject to a cognition process, which results in a mental theory (for
example: This is the face of my grandmother).

In the next step, the mental theory is compared (aligned) to experience/reality.
That is, we try to confirm that the cognition process was conducted in the cor-
rect way. All learning aims at the construction of a conflict-free mental theory.
The result of the evaluation can be used to adapt the stimulus for the correction
of misinterpretations. The eventual result of the learning process is a mental
theory of the presented stimulus.

We would like to point out that this learning process covers human learning
as well as machine learning. In the latter case the left side of the figure stands
for the training process, the right side for evaluation and refinement. In the
training process, the mental representations are equivalent to the descriptions
extracted from media object. The cognitive process is the actual categorization
process.

Similarity assessment is a ubiquitous element of categorization processes.
Similarity assessment allows us to recognize stimuli as similar that differ only
little in their mental representation. This ability is called generalization. It
accelerates the learning process of related stimuli significantly and it allows to
map learnt concepts on unknown stimuli that are somehow comparable to known
ones. The fundamental problem of generalization is to state how similar two
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stimuli are depending on the difference (distance) of their representation. The
simplest answer to this question would be the Dirac δ function which would be
maximal for zero distance (the stimuli are identical) and minimal otherwise (no
similarity for any form of deviation). This function has not be considered as a
generalization function for human learning, even though it is relevant, wherever
the elements of the mental representation are not related, i.e. where no concept
of neighborhood exists. This is, for example, almost the case for bioinformation
and perfectly the case for random strings, which explains why it is so hard for
human beings to learn random sequences.

Practically relevant generalization functions are limited distributions. It is
not surprising that the Gaussian distribution plays an important role in the (his-
toric) definition of generalization functions. Applied as a function for similar-
ity from distance, the normal distribution expresses that closely related mental
representations are considered highly similar, while representations with high
distance are considered unsimilar (see the first graph in Figure 17.2).

The Gaussian generalization function has seen considerable criticism from
psychologists who investigated the actual generalization behavior of human be-
ings. Of paramount importance are the works of Shepard, who stated in [336]
that the ideal generalization function would be e−m(x,y), m being a distance
function for objects x, y. The resulting graph is the second element of Figure
17.2. This universal law of generalization, as Shepard called it, was already
suggested in [310]. It assigns perfect similarity only to identical representations.
Any form of difference is punished, initially stronger than in the Gaussian case,
for large distances to a lesser degree.

Recently, the universal law of generalization was generalized in [370]. The
authors point out that humans show a certain flexibility for small differences in
representations. Hence, for small distances, the similarity score should not be
penalized. Please observe, that this most recent form of generalization function,
the bottom element of the figure, is again, very similar to the original Gaussian
function. In conclusion, generalization is an important aspect of human learning
which should also be considered in machine learning, if the set of stimuli possesses
a concept of neighborhood.

Which learning problems exist that can be solved by the ideal learning al-
gorithm? Many authors agree, that three fundamental learning problems exist
both for humans and machines.

• Recognition of patterns

• Estimation by summarization (also known as regression)

• Estimation of a density function

Figure 17.3 illustrates these three problems. Pattern recognition aims at
associating an unknown stimulus with the nearest (smallest distance) known
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Figure 17.2: Generalization Functions: Gaussian, Shepard, Tenenbaum.

stimulus. The figure shows that the circle (unknown stimulus) is associated
with the closest x. Human pattern recognition is frequently called association.
Vocabulary learning is a typical example. Here, the assignment process is heavily
influenced by our generalization behavior. An example for machine pattern
recognition is face recognition.

Regression aims at the summarization of a set of stimuli (that may represent
a sequence or not) by one mental theory. The figure shows a dotted trend line
as a typical regression example. Human beings are very well able to perform
regression visually. In machine learning, one typical application would be linear
regression for prediction in stock data analysis.

The last learning problem, density estimation, requires the most sophisti-
cated procedure. Here, we aim at learning the characteristic function of a set of
stimuli. This is what we usually call the experience of human beings. Density
functions (for example, the dashed ellipse in the figure) allow us to judge a new
stimulus as, for example, dangerous, interesting, desirable or typical. It has to
be noted, that human density estimation is necessarily a long-time process. Col-
lecting experience is a learning process with many iterations and adaptations.
The non-existence of stability of the learning environment makes the process
even more complex. Furthermore, in the third part of this book we will discuss
the major findings of norm theory and see, that human density functions are –
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Figure 17.3: Pattern matching (dotted ellipse), Regression (dotted line) and
Density Estimation (dashed ellipse).

despite many years of learning and experience – often surprisingly insufficient.
In machine learning, density estimation is the core component of all proba-

bilistic methods. We already mentioned the typical methods used, in particular,
expectation maximization and Gibbs sampling. Both procedures are iterative
and resemble the general learning process as well as the process of human expe-
rience collection.

Now, how can these fundamental learning problems be solved? Scientific
effort has developed three general approaches and a number of more specific
ones. The three major approaches are discussed below.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Supervised learning is the case discussed in the first part of the book. Ground
truth data and labels are used to train, evaluate and refine a classifier. Super-
vised learning is the ideal case illustrated in the general learning process. In
human learning, the ground truth labels are personified by the teacher that
represents world knowledge and enforces refinement of the mental theory.

Unsupervised learning builds a mental theory only from stimuli. The cog-
nitive process that transforms mental representations into a theory has, in the
absence of feedback/alignment, to be controlled by a set of rules. In machine
learning, the k-means algorithm is a typical unsupervised learning algorithm.
There, the references together with the distance function and the The nearest
reference wins rule form the set of rules required for learning. Obviously, any
unsupervised learning problem can be stated as a supervised learning problem.
The opposite is not true. Hence, supervised learning is a more general solution
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than unsupervised. A typical supervised algorithm is the decision tree. Decision
trees are able to represent any ground truth.

Multiple instance learning, transduction and semi-supervised learning are
three special cases of supervised learning. In the first case, we do not provide
class labels for each stimulus but only for groups of stimuli. This proceeding
allows a little more flexibility in the learning process. Transduction learning
aims at estimating outputs from ground truth data and additional references.
In a similar fashion, semi-supervised learning combines feedback-based learning
with rule-based learning.

Categorization Evaluation

Model

Categorization Evaluation

Model

Figure 17.4: Supervised Learning (top) and Reinforcement Learning (bottom).

Reinforcement learning is a concept that looks similar to supervised learning
but is, in fact, fundamentally different. The main idea is that learning is per-
formed unsupervised but under the impression of the caused effects. The learnt
patterns are evaluated as positive or negative and a corresponding reward is fed
back into the system. Figure 17.4 illustrates the difference between supervised
learning (top graph) and reinforcement learning (bottom graph). In the second
case, the results of evaluation are not used to manipulate the categorization
model (mental theory) directly. Instead, the rewards are made known to the
categorization process which in turn manipulates the model. We admit that the
theoretical difference between supervised and reinforcement learning is small.
With little effort the latter concept can be incorporated into the first.

In this section we approached the categorization problem from the psychologi-
cal side: learning. We came to know the paramount importance of generalization
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for effective learning. That is, if the given data is not organized by some neigh-
borhood concept, learning will necessarily be ineffective. The three fundamental
problems of learning can be approach by supervised or unsupervised learning.
The first concept, more general than the second, is the typical model in media
understanding. In the next section we take the philosophical approach by trying
to answer the following näıve question: What is a class (semantic group, mental
theory, category, etc.)?

17.2 Concept Theories

The result of categorization is a label that is associated with some meaning.
In computer science, we frequently call this meaning a class, in psychology a
category, in philosophy a concept. Philosophers have discussed – and are still
discussing – the nature and structure of concepts for more than 2500 years.
This discussion has lead to a number of concept theories. We believe that the
philosophical understanding of concepts is able to provide valuable input for
understanding the machine learning problem. In this section, we review the five
major concept theories and try to link them to the properties of categorization
methods. We follow the excellent introduction given in [245].

We require a few terms for understanding the concept theories. Concept
theorists differentiate between primitive concepts and complex concepts. The
first are close equivalent to our descriptions. The second type may be seen as
events (high-level semantics). In Chapter 28 we will see that the two types of
events can also be distinguished by surface features and deep features. Primitive
concepts are characterized by clearly recognizable surface features while complex
concepts are characterized by hidden (deep) properties. Below, we will see that
the existence of deep features is a central problem of the definition of concepts.

In [245], Rosch defines the terms category, prototype and taxonomy. A con-
cept is a set of equivalent objects. Of these, the prototype is the most repre-
sentative one. A taxonomy relates categories to each other by their similarity.
These definitions are very useable for the discussion below.

The five major concept theories are:

• Classical theory

• Neoclassical theory

• Prototype theory

• Theory theory

• Conceptual atomism
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The classical theory of concepts is by far the oldest as it was already discussed
by the classic Greeks. Prototype theory is a product of the early twentieth cen-
tury while the three other theories were developed in the intensifying discussion
process of the 1960ies.

The classical theory states that any concept can be defined by a set of neces-
sary and sufficient conditions. The classical theory tries to get a hold on reality
by tools of mathematical rigor. For example, a dog is an animal with a snout,
a tail, fur and claws that barks, eats meat, nibbles at bones, etc. All of these
conditions are necessary, but they are all together not sufficient – which brings
us to the first major problem of the classical theory. In its long history it was
hardly ever possible to define a practical category by such conditions. This is
called Plato’s problem. Of course, a theory – however clearly defined – that does
not solve the concept problem practically, will hardly be satisfactory.

Other problems of the classical theory are summarized in Table 17.1. It is
not able to explain prototypes, i.e. why one member of the set of a category
should by more relevant than another (typicality problem). It cannot explain
why humans are able to categorize an event correctly even though they are
ignorant of or wrong about the necessary and sufficient conditions of the event.
Moreover, psychological experiments show that necessary conditions appear to
be irrelevant in the cognitive categorization process. As with typicality, the
classical theory is not able to model fuzzy boundaries of concepts. Eventually,
from a postmodern point of view classical theory is prone to construct concepts
rather than to describe them (analyticity problem).

The neoclassical theory tries to overcome the major problems of the classical
theory by relaxing the model. The need for sufficient conditions is dropped and
it is no longer claimed that the theory should work for all concepts. Those that
can be made subject to the neoclassical theory are described by an as accurate
as possible list of necessary conditions (or, properties).

The prototype theory implements a completely different idea. It states that
the core element of any concept is its most representative example. Objects
that are sufficiently similar to the prototype (generalizable) are assumed to be
members of the category. This theory is very appealing for media understanding
since it uses the same tools. For example, a dog can be seen as anything suf-
ficiently similar to a German shepherd. Unfortunately, it has been shown that
prototype theory suffers from significant shortcomings. The theory is hardly
able to express composed concepts such as old female dog belonging to an Indian
shipbuilder by a prototype. As the classical theory, it works well despite of error
and ignorance of the prototype. Plato’s problem is – to a lesser degree, but still
– true for the prototype theory and it is difficult to find an undisputed prototype
for such a simple concept as car.

Figure 17.5 compares classical and prototype theory. The gray, diffuse con-
cept is, in the first case, fenced off by a number of border lines (conditions).
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Figure 17.5: Classic Concept Theory (left) and Prototype Theory (right).

In the second case, we define a center and a radius for everything that should
belong to the concept. As the figure shows, both methods fail in describing the
concepts perfectly. Every part of the concept outside the concept border may
be interpreted as underfitting (too rigid), every close adaptation of the border
to the concept as overfitting.

Theory theory and conceptual atomism are two approaches of the recent
past. The first theory states that the mental theory is work in progress and a
mixture of properties and examples that cannot be made subject to analysis.
In view of the classical and prototype theory this approach appears reasonable.
However, it does not help us much (impotence problem), like the others it cannot
explain cognitive errors and ignorance, and it does not provide stable definitions
of concepts. It rather leaves the recognition to the life-long learning process.

Conceptual atomism is even more radical. This theory assumes all concepts
to have no structure and, therefore, to be not analyzable. Though this approach
removes the major problems of the other approaches, it opens significant new
ones. For example, some concepts, such as door, obviously have a structure and
can be analyzed. A door consists at least of a door leaf and a handle. Atomism
cannot explain composed concepts at all and – very important for us – it does
not explain much. It is tempting, though, to combine conceptual atomism and
the neoclassical theory, defining some concepts as atoms and the rest by atoms
and necessary conditions.

Table 17.1 summarizes the shortcomings of the five concept theories. What
can we learn from these theories?

1. There are not so many possibilities to define classes. 2500 years of philo-
sophical investigation have yielded only two analytic theories.

2. The classical theory is very similar to those classifiers that we called sep-
arators in Chapter 11. Here and there we separate relevant and irrelevant
events by conditions.
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Aspect Classic Prototype Theory Atomism
Analyticity + +
Compositionality + +
Error + + +
Fuzziness +
Ignorance + + +
Impotence + +
Irrelevance +
Plato’s Problem + +
Stability +
Typicality + +

Table 17.1: Comparison of Concept Theories.

3. The prototype theory is very similar to what we called hedgers. Both ap-
proaches define a middle point (reference, prototype) and assume a neigh-
borhood of the typical element as relevant.

4. Since all efforts to define rational concept theories have lead to just two
theories, which are both equivalent to fundamental types of classifiers, we
can conclude that hedgers and separators are the fundamental approaches
to machine categorization and that no third fundamental possibility exists.

5. The best way to describe concepts is probably a mixture of the theories.
Hence, the best machine categorization scheme may also be a mixture
of separation and hedging. In machine learning, ensemble methods (e.g.
boosting) implement this idea (see Chapter 19).

In the two remaining sections we deal with details of categorization on the
micro level and the macro level that are relevant for the next two chapters where
important practical classifiers are introduced.

17.3 Similarity Measures in Categorization

The author of [90] is more strict than we are. He distinguishes classification
from categorization by requesting from the latter that the category must express
the properties of the classified object. Consequently, he distinguishes arbitrary
classes from categories, of which the latter can be described by the methodology
of a concept theory. However, he arrives at the same conclusion as we, when he
states that similarity is at the heart of classification. Here, classification is the
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macro process while similarity measurement is the micro process embedded in
and iterated by the macro process.

In this section, we deal with similarity measurement methods that extend
the already introduced metric distances and generalization models. We already
discussed the shortcomings of distance models that operate on dimensional de-
scriptions [90]. Psychologists have found that on/off-features (predicates) allow
more freedom in the definition of human-like similarity measures. Appendix B.2
summarizes such measures. Below, we briefly discuss the transition from dimen-
sional distance measures to predicate-based measures as well as the application
of these measures on categories described by sets of predicates. En passant we
introduce a model for human choice behavior – a problem closely related to
similarity measurement.

In the first part of the book we introduced the vector space model and stated
that a number of significant distance measures are based on the metric axioms.
We discussed the Minkowski distances of first and second order. Another dis-
tance family of high significance are the Mahalanobis distances. Equation Q4
in Appendix B.1 shows one particular form. The general model is defined as
follows.

m(x, y) = x.χ.y (17.1)

Here, χ is a covariance matrix of the elements of the description vectors x, y.
By setting χ we are able to express relationships between groups of descrip-
tion elements flexibly. Therefore, Mahalanobis distances are used wherever such
covariances do exist (for example, between colors in color histograms).

The metric axioms, however, are too rigid to model human similarity judg-
ment. We saw that the symmetry axiom as well as the triangle inequality are
violated by human judgment. Among the remedies we have the density model
developed by Krumhansl (M1 in Table B.3). This model adds a density term for
each of the two compared stimuli. The idea is that smaller distances are more
relevant in high-density areas than in areas with lower density. The distance
terms create this effect and are thus able to overcome the restrictions of the
symmetry axiom and the triangle inequality.

Since the Krumhansl model makes use of a distance function, it is a meta-
model of similarity measurement. A second model of interest here is the product
rule defined by Estes (M3 in Appendix B.3). This model defines a static distance
mi for non-identical description elements and computes the overall distance as
the n-th power of this distance, where n is the number of non-identical descrip-
tion elements. The practical value of the product rule is limited, because, as the
author himself states, the product rule may be excessively sensitive. However,
as a means to overcome the limitations of the metric axioms it represents an
original approach.



17.3. SIMILARITY MEASURES IN CATEGORIZATION 327

The categorization process of media understanding may also be seen as a
problem of choice. Given a media event, the categorization algorithms has to
choose the best fitting class label. Choice models make use of distance functions.
For example, the model of human choice introduced by Luce [238] defines the
probability P (ci|f) that a particular category ci is associated with a description
f as follows.

P (ci|f) =
m(ci, f)∑
jm(cj , f)

(17.2)

For the approach, the ci are considered prototypes (references) of their cate-
gories. Hence, Luce developed his model after the prototype theory. This model
was later extended by Shepard, who converted the distance measurement pro-
cess into a similarity measurement process by using his generalization function
e−m(x,y). In both forms, the model states that the likelihood of a description
belonging to a particular category depends on the relative proximity of the de-
scription to the category prototype. It would be interesting to incorporate this
form of weighting, for example, in the distance-based models introduced in the
first part. Furthermore, it would be interesting to investigate the performance of
a choice model that uses both Shepard’s generalization function and Krumhansl’s
density model. To the author’s knowledge such experiments have not yet been
undertaken in media understanding.

quantitative

predicate-based

Figure 17.6: Quantitative and Predicate-Based Similarity Measurement.

Psychologists suggest a general approach to overcome the problems of dimen-
sional similarity measurement. Predicate-based measurement allows for defining
models (in fact, meta-models) that are not metric. The fundamental idea is illus-
trated in Figure 17.6. Dimensional descriptions are organized along quantitative
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scales. Distance can be measured along arbitrary paths. Predicates, in contrast,
are properties with only two values: present (on) or not present (off). Hence
the frequent name on/off-features. Since predicates carry only little informa-
tion, predicate-based descriptions must necessarily be longer than dimensional
descriptions. The comparison process is simpler, though. Two corresponding
predicates can either be both present, both absent or only one of the two carries
the property. The table in Appendix B.2 lists a large number of predicate-based
similarity and distance measures. These models are meta-models, because the
property-wise comparison is already a similarity measurement process.

Some predicate-based measures have proven exceptionally successful in the
representation of human similarity perception. Tversky’s feature contrast model
P6 is able to express most findings about human categorization. The Hamming
distance P3 is successfully employed in text understanding. The pattern differ-
ence P8 is a successful measure in cluster analysis. However, one major problem
arises when dimensional distance measures should be substituted by predicate-
based measures in media understanding. Media description elements are usually
not predicates but quantities. A straightforward solution to this problem is de-
signing a media understanding of media understanding process that computes
predicates from quantities in the first iteration and employs predicate-based
similarity measures in subsequent iterations.

Findings in psychological research suggest a second solution. Recent experi-
ments have shown that both distance measurement of quantities and predicate-
based similarity provide valuable information for the categorization process. Au-
thors have suggested using both types of information in dual process models.
That is, where quantities are provided by feature extraction, quantitative mod-
els are used for comparison and where predicates are provided, predicate-based
measures are used. Furthermore, predicate-based measurement can be extended
to quantities by replacing the inner comparison process (both on? both off? oth-
erwise?) by fuzzy methods. The table in Appendix B.4 lists a few possibilities.
We will discuss them in detail in Chapter 28. For the purpose of this section it
is sufficient to understand that predicate-based and quantitative measurement
are not mutually exclusive. Both approaches can be used in the micro process
of categorization, individually or combined.

In summary, metric distance measurement is not the only option for the
categorization micro process. Human choice models can be incorporated as
well as generalization functions and other distance meta models. If distance
measurement is insufficient, the process can be extended by using predicate-
based measures, either as a replacement of quantitative models or combined in
dual process models. We are positive that human similarity perception will gain
more attention in machine learning in the near future, and that flexible dual
process models will replace static distance functions.
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17.4 Classifiers in Practice

This section discusses a number of relevant issues on the macro level of catego-
rization. We extend and reorganize the terminology of the first part of the book.
First, we refine the fundamental applications of categorization and relate them
to the learning problems. Then, we deepen the categorization of classifiers into
hedgers and separators and give examples based on the already introduced algo-
rithms. Eventually, we emphasize a few macro level concepts important in the
next chapters, and we prepare a framework of building blocks for their analysis.

In the first part, we listed the three fundamental applications of categoriza-
tion methods as matching, retrieval and browsing. Matching aims at identifying
one correspondence for a query in a database. Face identification is a typical
example. Retrieval gathers the n best database members for a query. Internet
search is a typical example. Browsing organizes a database into (hierarchical)
clusters. Music genre classification is a typical example.

One application is missing in this list. Prediction aims at extrapolating se-
mantic knowledge from a query with or without knowledge from a database.
Prediction is typically an application of regression. A typical example is stock
data analysis for prognosis. The two other fundamental learning problems, pat-
tern recognition and density estimation, are only of minor interest for prediction.
Density estimation would theoretically be applicable, but is practically hardly
used. Instead, typical applications lie in retrieval and browsing. Pattern recog-
nition is the characteristic learning problem for matching applications.

Figure 17.7: Hedging (dotted) and Separation (dashed).

In Chapter 11 we introduced a simple taxonomy for categorization methods
by declaring that a classifier is either a separator or a hedger. Figure 17.7 illus-
trates the fundamental difference. Separators define categories by drawing a line
(hyperplane) between sets of objects in feature space. Hedgers, in contrast, fence
off accumulation points. It appears fair to characterize separators as global op-
erators while hedgers are rather local operators. A separation line goes through
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the entire feature space. One hedge defines just one cluster. Hence, hedgers may
be seen as ideal retrieval algorithms. Browsing will rather be implemented by
separators.

The construction of a local hedge requires a few tools. One option is the
provision of a center point and a radius (for a circular object) or some conic
section rule. Another option is the provision of a density function (mixture)
that defines the limits of the hedge. Separation requires the definition of a
selection rule (decision rule). Depending on their model, the already introduced
categorization methods can be classified as follows.

• Hedgers: Binary Independence Model, Cluster Analysis, K-Means, K-
Nearest Neighbor, Vector Space Model

• Separators: Decision tree, Random Classification

It is obvious that the methods that use references belong to the hedgers. The
binary independence model is a hedger, because it relates database members to
a query without defining a cut-off criterion for the result set. That is, it performs
a reorganization of feature space around the query. Decision trees are typical
separators. Random classification is just a theoretical option used as a baseline
for the evaluation of algorithms.

The majority of the probabilistic methods is missing in this list. Generally,
Bayesian classifiers and Bayesian nets (including all Markov processes) are rather
separators than hedgers, because the estimated densities resemble division lines
between feature space subsets. On the other hand, the adaptation of the density
functions is sensitive to cluster size and location, which would be a criterion for
a hedger. Therefore, we rather add them to a new group, the intermediates.
These methods are located somewhere in-between hedgers and separators. In
the consecutive chapters we will endeavor to characterize all new categorization
methods as either hedgers, intermediates or separators.

Figure 17.8: Underfitting (dashed) and Overfitting (dotted).

No matter whether they are hedgers or separators, all classifiers have to
find a balance between the rigidity of the model and a tendency for overfitting.



17.4. CLASSIFIERS IN PRACTICE 331

Figure 17.8 illustrates the problem. The dashed line is a classifier that separates
objects of type x from those of type o. As we can see, the rigidity of the
model (the line cannot be bent) forces the algorithm to a significant amount of
misclassifications. In contrast, the dotted line separates the data perfectly. The
price is close adaptation to the data. It is likely that this classifier would fail for
a more complex data set. This effect is called overfitting.

For the taxonomy defined above we can say that, practically, separators are
more extreme in terms of rigidity and overfitting. Too simple decision sets are
often too rigid while too flexible ones tend to be overfitting. Experiments in Weka
show that decision tree methods (e.g. random forests) frequently outperform
all other categorization methods. However, the performance is often due to
overfitting to imperfect ground truth. The behavior of hedgers depends on the
references. If they are well chosen, good classification results can be achieved.
Here, well chosen may be criticized as an open door for overfitting. In order
to overcome this criticism it is important to use hedgers that define/refine the
reference points based on some general model, not user input.

The last sentence leads the discussion towards the complexity of categoriza-
tion algorithms. Decision trees are very simple algorithms that can be trained
and executed quickly. Adaptive hedging procedures based on the k-means al-
gorithm require significantly more training time. For practical application it
is important to balance the importance of good performance (often, linked to
rigid models) against the generalization potential of the solution. It is gener-
ally advisable, to start the search process for the ideal classifier by comparing
the performance of the standard algorithms for the feature space, analyzing the
complexity of the model of the best performers and using the algorithm that has
the best relationship of performance vs. model complexity.

We would like to close this chapter with a first sketch of potential building
blocks of categorization. In Chapter 21 we will develop a detailed model. The
majority of the algorithms introduced in the first part of the book performed
either similarity measurement on the micro level (cluster analysis, k-means, etc.)
or probabilistic inference based on density estimation (Bayesian methods). Some
methods perform quantization as a preparatory step or for simplification on the
micro level (e.g. decision trees, k-nearest neighbor, binary independence model).
The macro process of most algorithms loops over a data set in at least two cycles
(training, application), densities are computed by iterative processes and cate-
gorization results are refined iteratively. Hence, control loops are characteristic
elements of categorization processes. In summary, four major building blocks of
categorization can be summarized as:

1. Control loop (expectation maximization algorithm, threshold optimiza-
tion, training cycle, iterative refinement by relevance feedback, etc.)



332 CHAPTER 17. PRINCIPLES OF LEARNING MACHINES

2. Model estimation (selection of weights, density estimation, probabilistic
inference, etc.)

3. Quantization (thresholding, selection of description elements, decision rule
application, etc.)

4. Similarity measurement (distance measurement, generalization, choice, etc.)

Some building blocks are linked to particular types of classifiers. For example,
model estimation is a necessary element of probabilistic models. Hedgers will
usually make use of similarity measurement. Simple algorithms make no use of
control loops. Quantization is the only building block that is as important in
categorization as in feature transformation and filtering. The simplification and
generalization of data is a fundamental method of media understanding.

We conclude from this chapter that categorization is the fundamental step in
the media understanding scheme for raising the semantic level of the data. It has,
therefore, a positive influence on the semantic gap and the polysemy problem.
The general problem is the dependence of categorization on well-balanced ground
truth. Incomplete ground truth may result in overfitting and bad generalization
behavior.

In the next two chapters we introduce sophisticated algorithms for catego-
rization that have an excellent balance of performance and model complexity.
The next chapter focusses on separators while the majority of those introduced
in Chapter 19 are hedgers.



Chapter 18

Risk Minimization Methods

Introduces principles of risk minimization, derives the support vector machine
as the optimal implementation of the structural risk principle, lists some of its
alternatives, explains the kernel trick and gives examples for kernel functions.

18.1 Risk Minimization Principles

This chapter introduces and discusses a classic model of categorization. Risk
minimization is one of the central paradigms of machine learning. We endeavor
to give a fair overview over the field that explains the fundamental hypothesis,
the main practical goals, the state-of-the-art algorithms that implement the
goals and, alongside, the concept of feature space transformation by kernels.
Risk minimization has been explained many times before in a large number of
publications. Our contribution lies in comparing kernel functions to similarity
functions. We will see that almost any function of two variables can be a kernel.
We investigate the gaps in the set of standard kernels and suggest novel kernels
based on psychological insights into the nature of human similarity perception,
i.e. methods based on the concepts discussed in the last chapter.

The first section introduces the terms risk and risk minimization. We in-
vestigate the various definitions of risk in machine learning and align them with
the fundamental learning problems. In the second section, we introduce the cat-
egorization model that is most closely linked to risk minimization: the support
vector machine. We explain its origin, optimization criterion and the analytic
solution. We will see that the support vector machine establishes a beautiful
balance between loss minimization and computational complexity. For opti-
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mal performance, however, it requires feature space transformation by kernels.
The latter concept is explained in the third section of the chapter. We list the
standard kernels, discuss their common foundations and give an outlook on non-
standard kernels and future developments. In the last section, we discuss various
variants of the support vector machine as well as an approach that is half way
between categorization and its evaluation: linear discriminant analysis.

The discussion of this section starts with establishing the empirical risk min-
imization principle. In the second step, we extend it to the structural risk mini-
mization principle, which takes computational complexity into account. Eventu-
ally, we investigate a few recently introduced alternatives to the state-of-the-art
loss functions.

Machine learning by risk minimization is, as a research discipline, heavily
indebted to Prof. Vapnik. In [380] he lays down many of his contributions.
Below, we follow the general line of his argumentation, only deviating where
recent advances have moved the scientific frontier significantly.

The idea of risk minimization is that a classifier should be trained with the
goal to make as few as possible classification errors on the test set as possible.
We assume that such a classifier will perform optimally on unknown data. Hence,
risk minimization depends on the availability of a ground truth and implies the
usage of classifiers that use a training step. Vapnik defines the risk functional,
the operationalization of the basic assumption as follows (from [380], p. 18,
simplified).

r =
∫
l
(
gt(fi), classify(fi)

)
di (18.1)

Here, r is the risk, fi are the members of the test set, classify is the classifier,
gt retrieves the ground truth value of fi and l is a loss function that defines
the penalty for misclassifications. As we can see, the risk is just the sum of the
misclassifications of the training set.

Density
Estimation

Regression

Pattern
Recognition

Figure 18.1: Typical Loss Functions.
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The essential element in the risk functional is the loss function. Figure 18.1
shows three typical examples and associates them with the fundamental learning
problems. Vapnik defines the three depicted loss functions as follows.

lpr(x, y) = 1− δ(x, y) (18.2)
lreg(x, y) = mL2(x, y) (18.3)

lde(x) = − log p(x) (18.4)

The goal of pattern recognition is perfect recognition of a stimulus. The loss
function of pattern recognition (pr) makes use of the Dirac delta function. If the
two parameters are equal, this function returns 1 otherwise 0. Hence, the loss
for each misclassification is 1. The pattern recognition loss function is illustrated
by the two x in the figure.

The loss function for regression (reg) is implemented by the Euclidean dis-
tance (L2 norm). The goal of regression is to find a well-balanced classifier for
all inputs. Since the sum of squared distances is also used in linear regression
it is a natural choice for the loss function. The effect is that large misclassifi-
cations cause over-linear losses while small errors are abated. The loss function
for regression is shown as a solid curve in Figure 18.1.

Density estimation (de) is a problem fundamentally different from pattern
recognition and regression. Here, the goal is to identify a density function –
for given descriptions – that is of overall good quality. In the first part of the
book we declared that the ideal form is uniform distribution – if the media
data allows it. Every other distribution exhibits redundancy. The loss function
suggested by Vapnik is based on Fisher’s approach which is an early form of
the entropy function (see Chapter 22. In this form, every deviation from the
uniform distribution is punished. Small values for probability bins cause large
losses. These characteristics are expressed by the dashed curve in the figure.

Now, the empirical risk minimization principle that represents the practical
machine learning problem can be stated in the following forms.

rpr,reg =

∑
i,j∈L

l∗(fi, fj)

|LxL|
→ min (18.5)

rde =

∑
i∈L

lde(fi)

|L|
→ min (18.6)

The empirical risk is summarized over all existing samples. Hence, the ideal
integral is replaced by a sum. For each possible categorization the loss function
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is computed and summed up. The result is normalized over the number of opera-
tions. That is, the empirical risk equals the number/amount of misclassification
that a classifier performs on the test set after training.

Empirical
RiskComplexity

Expected
Risk

Effort

Risk

Figure 18.2: Structural Risk Minimization Principle (from [380]).

The empirical risk minimization is näıve in two respects. Firstly, it does not
consider the overfitting problem. A classifier that fits perfectly to an awkward
ground truth will receive a zero empirical risk even though it will probably fail on
real-world data. Secondly, this definition of risk does not consider algorithmic
complexity. A complex algorithm with bad performance will be rated more
desirable than an algorithm with little worse empirical risk but significantly
better performance. Vapnik criticized this ignorance and suggested replacing
the empirical risk minimization principle by a dual model. Therefore, he defined
the additional goal confidence which covers the complexity issue. The confidence
in a classifier is low if the algorithm is (over-)simple and high, if it is complex.

Figure 18.2 illustrates the relationship of empirical risk and confidence. For
the sake of simplicity we write complexity instead of confidence. Based on the
relationship, Vapnik formulated the structural risk minimization principle which
states that the ideal classifier should provide a balance of empirical risk and
complexity: the expected risk (dotted vertical line). It is important to note that
the structural risk does not only optimize misclassifications and computational
complexity but as well the rigidity of the algorithm (overfitting problem). It
eliminates too simple algorithms which would be too rigid as well as too complex
algorithms which would be prone to overfitting. The balance of the structural
risk optimizes three goals.

In the next section we introduce the support vector machine which is a prac-
tical consequence of the structural risk minimization principle. However, before
we would like to introduce a few alternatives for the risk and loss functions
stated above. Most of these functions have been defined recently. It goes with-
out saying that the concrete definition of the loss function has highest influence
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on the practical optimization goal of both the empirical and the structural risk
principle. The minimum risk metric is defined as follows.

r =
∑
i∈L

∑
j∈L

p
(
gt(fi)|fi

)
.
(
1− p(gt(fi)|fj)

)
(18.7)

Here, p is the conditional probability for the categorization of a sample fi
in a particular class. The probabilities are built from the actual categorization
behavior of the classifier. The resulting risk is similar to the human choice model.
It represents the relative chances of misclassification (second term) summed up
over all samples.

Two other loss functions are the minimax function and the Neyman-Pearson
function. The first minimizes the maximum of false positives and the rate of
the misclassifications. The second minimizes the rate of misclassifications while
ensuring that the number of false positives remains below a specified level. These
loss functions are relevant for the practical evaluation of classifiers. We will
encounter them in Chapter 20.

In summary, the structural risk minimization principle optimizes the number
of misclassifications, the rigidity of the algorithm and the complexity of the cate-
gorization process. In the next section we introduce the par excellence algorithm
for structural risk minimization.

18.2 The Support Vector Machine

The support vector machine (SVM) can be seen as the practical consequence of
the structural risk minimization principle. In this section, we describe its origin,
model and solution. We will see that it is surprisingly similar to a number of long
established categorization methods. Still, for many applications the performance
of the SVM is unbeaten. We start the section with a short motivation, continue
with the goal function and the optimization model (macro process), explain the
solution as well as a few tricks on the micro level that are necessary for better
performance and, eventually, point out a few applications of the SVM.

The SVM is based on two categorization principles:

• Linear regression

• The perceptron neural network

Linear regression aims at describing a cloud of data points by a linear func-
tion. Therefore, the model is a straight line while the optimization principle is
minimization of distances from the data points to the model. The goal func-
tion is equivalent to the empirical risk minimization principle. The model is
very simple and minimizes the complexity of the categorization method. Hence,
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linear regression may justly be called a suitable approach for structural risk min-
imization. The major disadvantages of the method are: It is inflexible, i.e. the
model is too rigid for most practical problems, and it is prone to outliers. The
optimization goal is usually operationalized by the Euclidean distance which,
like the statistical mean, is easily biased by noise, errors of measurement and
similar problems.

Figure 18.3: Single Neuron Categorization.

The perceptron, in its simplest form, is given in Figure 18.3. On neuron (the
dotted line) is able to separate two sets of data points. The equation of this
model can be written as sgn(w0.f + w1), where f is the description vector of a
data point and w0, w1 are the parameters of the model. Practically, w0 is the
gradient of the separating line while w1 is its offset. The perceptron is able to
separate a set of points in two groups, hence – though being a separator – it is
a suitable model for retrieval problems.

Figure 18.4: Which Separator is the Best?

In the perceptron model, the values for the two parameters depend on the
training patterns, the sequence of their presentation and the learning rate. From
the point of view of risk minimization, any line that separates the two sets of
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data points is a valid solution. Figure 18.4 shows a few examples.

Margin

Figure 18.5: Example for Maximum Margin Categorization.

Now, the question is: Which model is the best? Vapnik, the author of the
SVM, answers this question by introducing the margin, defined as the maximum
distance of two parallel separators (hyperplanes) that just touch the two sets
of points. Figure 18.5 illustrates the idea. Each of the three lines in the figure
is a perfect classifier for the problem (zero loss). However, it is easy to argue
why the line in the middle is superior to the two others. Since it is further away
from the two sets of points it is less likely that a newly added point will violate
the model (e.g. an o below the separator). Since the margin is per definition
maximal, the center line is farthest away from the data sets and, therefore, at
least as good a classifier as any from Figure 18.4 and under consideration of the
last sentence in some cases even better.

Before we define the optimization goal of the SVM formally in the next
paragraph, we review it beneficial to emphasize that only few data points are
required to identify the maximum margin. Precisely, for an n dimensional data
space we require n+1 points. If we see the borders of the margin as two parallel
planes we require n points for determining the position of one plane in the space
while we need just one more point for setting the distance of the second plane.
The data points that define this system are called support vectors. It is an
outstanding aspect of structural risk minimization by the SVM that the number
of required training vectors is so small. It is the art of SVM optimization, though,
to identify these vectors quickly in a large feature space. The next paragraphs
show how it is done.

Vapnik states the maximum margin problem formally as:

δ(w0, w1)→ max (18.8)

Here, δ is the function of the margin.1 The classifier associated with the

1For the sake of uniformity and better understanding we do not use the naming conventions
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function of the margin implements empirical risk minimization based on the
pattern recognition loss function:

classifySVM = sgn(w0.f + w1) (18.9)

That is, the parameters of the margin are used to categorize a description f in
one of two groups {−1, 1}. In a similar manner, regression can be implemented
with support vectors by using an appropriate loss function (see Section 18.4).

w0

w1

ε2

f0

f1 f2

δ = mL1(f1, f2)

w0f0 + w1 = 1

w0f1 + w1 = −1

w0fi + w1 ≥ 1

w0fi + w1 ≤ −1

δ = 2

Figure 18.6: Elements of the Support Vector Machine.

How can we express the margin as a function of feature space? The necessary
ingredients are gathered in Figure 18.6. First of all, the margin is determined by
the vector w0 perpendicular to the separating hyperplane and by the offset w1.
Then, the margin can be expressed with the help of two description vectors with
minimum distance on opposite sides of the borders of the margin, i.e. along w0.
The vectors f0, f1 in the figure satisfy this condition. Hence, the margin is the
L1 distance of these points: δ = mL1(f1, f2). Furthermore, the points f0, f1 can
be expressed in terms of w0, w1 (see upper right of the figure). All points beyond
the upper border of the margin can be expressed by the equation w0fi +w1 ≥ 1
and analogously for the lower boundary. Our findings so far can be summarized
as follows.

δ = |f1 − f0| (18.10)
f1 = w0.a+ f0 (18.11)
1 = w0f0 + w1 (18.12)
−1 = w0f1 + w1 (18.13)

introduced by Vapnik to describe the SVM but continue with the notation introduced in the
first part of this book.
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The second equation states that f1 can be reached by moving from f0 in
direction w0 for distance a. Now, we use this set of equations to derive the
equation of the margin. After inserting Equation 18.11 into 18.12 and replacing
parts of it by Equation 18.13 we reach the result a = 2

w0.w0
. Inserting 18.11 into

18.10 yields δ = |w0.a|. Inserting the first result into the second brings us to the
following expression.

δ =
∣∣∣∣ 2
w0

∣∣∣∣ =
2

√
w0w0

(18.14)

The square root of the squared w0 in the final form is equivalent to the
absolute value. Hence, the optimization problem of the SVM can be written as
follows.

δ =
2

√
w0w0

→ max (18.15)

With the conditions:

yi(w0fi + w1) ≥ 1 (18.16)

Here, yi = gt(fi) (we have a ground truth!) which allows us to merge the
conditions for members of both classes. These conditions need to be satisfied for
all vectors fi of the feature space. For a well separated feature space, of course,
the conditions are satisfied for all members if they are satisfied for the support
vectors.

But, what if the two groups of data points are not well separated? For this
problem, Vapnik suggests a standard solution from operations research: the
introduction of slack variables εi. The resulting goal function, known as soft
margin categorization, is defined as follows.

δ =
2

√
w0w0

− c
∑

εi → max (18.17)

In the equation, c is a constant penalty while εi holds the absolute value of
the distance from the actual position of fi to the border of the right side of the
margin (see Figure 18.6). The soft margin approach is certainly a weak point
of the SVM. It works well for classes that are not too closely interwoven. In
the next chapter we will discuss approaches that are superior over the SVM for
overlapping data. For the sake of simplicity we will omit the penalty term of the
goal function in the rest of the discussion.

For solving the SVM optimization problem, we use the Lagrange approach
and formulate the dual optimization problem. First, we merge the conditions
with the goal function by adding Lagrange multipliers ai. We use the following
goal function, which equivalent to the one above.
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w0w0

2
→ min (18.18)

This trick will help us below to simplify the optimization expression. The
Lagrange approach looks as follows (ai ≥ 0).

Lwi,ai =
w0w0

2
−
∑

ai
(
yi(w0fi + w1)− 1

)
(18.19)

That is, every violation of a constraint causes a penalty. The Lagrange
function has to be minimized in wi and maximized in the Lagrange multipliers.
The next step is the elimination of all variables from L except the Lagrange
multipliers. Since we are interested in the optimum, we can set the first derivate
in directions wi zero and use the resulting expressions to eliminate these variables
in L.

dL

dw0
= w0 −

∑
aiyifi = 0⇒ w0 =

∑
aiyifi = 0 (18.20)

dL

dw1
=
∑

aiyi = 0 (18.21)

Equation 18.20 makes clear why it was a good idea to replace the original
goal function. These expressions – that must hold for the optimal solution – can
be used to remove wi from L. After setting w0w0 =

∑
aiyifi

∑
ajyjfj , some

algebra and reordering we arrive at:

Lai =
∑

ai −
∑
i,j aiajfifjyiyj

2
→ max (18.22)

In this optimization problem, the support vectors are represented by the non-
zero Lagrange multipliers. Why is that? In order to be maximal the conditions
(second term of L) must not be violated. Every violated condition must be
eliminated by a zero multiplier. Hence, what remains are the support vectors.
Quadratic programming is used to solve the optimization problem. This part of
the solution – the actual training process – is not specific for the SVM.

So far, we have defined the SVM as a very rigid classifier that uses slack vari-
ables in order to avoid underfitting. The model is similar to the perceptron and
linear regression. The solution, though artful, has the drawback that quadratic
programming is required to identify the optimum. This part of the computation
is very resource-consuming.

One further trick on the micro level makes the SVM highly effective for
the categorization of high-dimensional media data. As we see in Equation 18.22,
description vectors appear only in pairs fifj linked by multiplication. The kernel
trick is to replace this term by some function k(fi, fj) that maps the description
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f f

f2

Figure 18.7: Kernel Trick.

vectors to some space of higher dimensionality and measures their similarity
there.

Why should we want that? Above we said that the introduction of slack
variables for soft margin categorization dilutes the rigid scheme of the SVM. An
alternative that allows to separate overlapping data sets by a simple hyperplane
would be desirable. The kernel trick provides this alternative. Figure 18.7
explains the principle. The left side of the figure shows a one-dimensional feature
space that cannot be separated by a hyperplane at zero loss. The right side shows
the same data set with a second dimension that is just the squared first. The
right feature space can easily be separated by a hyperplane.

SVM and kernels are closely linked. The model of the classifier is simple, often
too simple for complex data sets. Mapping feature space to higher dimensionality
introduces white spaces between neighboring points that increases the chance
that the space is separable. If it is still not, the slack variables are used. See the
next section for a detailed discussion of kernels.

The SVM – as a general-purpose classifier – can be used to separate arbitrary
data sets though the performance is not equally good for all problems. The
particular strengths of the approach are identifying a reliable solution at good
performance due to ignoring the majority of the data points. By nature, the SVM
is a separator. The resulting dichotomy is a retrieval solution. For browsing,
SVM cascades have to be designed. Since the margin lies in the middle of the
space bordered by the support vectors, the classifier does not consider large
differences in magnitude of the two classes under consideration. In the last
chapter (e.g. Krumhansl density model) we saw that such considerations are
important for human similarity perception. Media understanding is the attempt
to imitate human perception. Hence, though the output fits naturally it is not
advisable to use an SVM for retrieval tasks, because the imbalance of the two
classes is not well represented. We recommend using groups of SVM for browsing
if cluster analysis shows that clusters of comparable size exist in the training set.
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Under such conditions, the SVM performs well.
In summary, the SVM is a fast and stable categorization method with good

performance in many situations. Its rigid model makes it a worth implemen-
tation of the structural risk minimization principle. Kernel mapping allows to
classify even overlapping data sets well. In the next section we investigate the
kernel trick and its consequences in detail.

18.3 Kernel Functions

In this section, we review the kernel approach to similarity measurement. We
have seen in the last section that kernels can be extremely helpful for the reorga-
nization of a feature space. Like a similarity measure, a kernel organizes a space
along the requirements of some object of interest (e.g. a query). Below, we first
discuss the fundamental ideas behind the kernel trick. Then, we state the for-
mal requirements of kernels and list the most common solutions for quantitative
data. The third part of the section introduces string kernels as a symbolic form
that gains increasing attention in text understanding. Eventually, we discuss
the usability of similarity functions as kernels, where we make use of the insights
gained in the last chapter.

The kernel trick has two components. It is important to note that both
components are required to define a kernel function.

1. A mapping function creates new dimensions and maps the input vectors
to the higher-dimensional space.

2. A similarity function measures similarity in the higher-dimensional space.

There is no trick in the second component and the trick in the mapping
is very simple. By adding new dimensions but leaving the number of data
points constant we necessarily increase the white spaces between the data points.
Hence, separation by a model as simple as a hyperplane becomes more likely.

It is not necessary that the mapping function is stated explicitly. Most
kernel functions employed today mix mapping and similarity measurement to
one function. In the last part of the section we will see that this causes serious
limitations for the approach. Almost any function in two variables can be a
kernel function. The only formal criterion is Mercer’s theorem, which states that
a kernel function has to be symmetric and positive semi-definite, i.e. k(x, y) =
k(y, x) ≥ 0.

Figure 18.8 plots four major types of kernel functions relative to their simi-
larity measurement functions. These kernels have the following equations.
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Perceptron

Linear

Polynomial

Gaussian
m(x, y)

k(x, y)

Figure 18.8: Characteristic Kernel Functions.

k(x, y) = x′y linear (18.23)
(1 + x′y)a polynomial (18.24)

e−a(x−y)2
Gaussian (18.25)

tanh(w0x
′y + w1) perceptron (18.26)

The linear kernel has no mapping function. The similarity measurement
function is equivalent to the cosine measure and positive convolution. The linear
kernel is the standard case in the SVM.

The polynomial function is a real kernel in the sense that mapping is per-
formed. Parameter a determines the number of new dimensions that are created.
Similarity measurement is, again, performed by positive convolution.

The Gaussian kernel is interesting because of its similarity to the generaliza-
tion functions discussed in the last chapter. It does not really provide a mapping
into a higher space but weights the similarity measurement according to some
Gaussian learning environment. Interestingly, the Gaussian mapping function
is typically combined with the L1 distance measure, i.e. negative convolution.
Hence, similarity is here created by generalizing distance. In the last chapter we
saw that the Tenenbaum generalization function is the most accurate general-
ization function today. It would, therefore, make sense to use this function in
such a kernel function.

The perceptron kernel imitates a neural firing function for which a Sigmoid
curve is used. The parameters of the mapping function define the sensitivity of
the neuron. The kernel uses positive convolution for similarity measurement.
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These kernels represent four fundamental functions. It has to be noted that
the polynomial kernel is the only one that implements the mapping idea fully.
The other kernels rather transform feature space to the characteristic topology
of a media understanding problem.

Before we continue the general discussion of kernels and give some alterna-
tives to the ones listed above, we would like to introduce two string kernels as a
particular class of kernels that are used for text understanding today. See [251]
for more examples.

The bags of words string kernel is defined as follows.

k(x, y) =
∑
f1(i).f2(i)√∑
f1(i)2.

∑
f2(i)2

(18.27)

For two given word histograms f1, f2 that hold in element f(i) the relative
importance of the ith term, the inner product is computed, i.e. positive con-
volution is performed. The result is a straightforward similarity measure. This
kernel does not contain a mapping function. It is, in fact, a similarity measure.

Another interesting string kernel is the string subsequence kernel which im-
plements a form of structural alignment. It is defined as follows.

k(x, y) =
∑
z∈Σn

∑
i∈subseq(zx)

∑
j∈subseq(zy)

al(i)+l(j) (18.28)

Here, a is a parameter in ]0, 1]. The strings i, j are drawn from all subse-
quences of terms z from the set Σn that consists of all sign-based n-grams of
length n. Function l(i) computes the length of string i, i.e. the number charac-
ters of i plus intermediate characters that do not belong to the pattern. The term
zx refers to the actual occurrences of string z in document x. Taking a ≤ 1 to
the power of larger than one length values leads to maximal similarity where the
lengths are equally short in the two documents x, y. This is guaranteed since we
are summing up over all possible combinations. This exhaustive method creates
an overall score of the similarity of two documents.

String kernels show that almost any function can be a kernel. We saw that
similarity measurement is often performed by positive or negative convolution.
However, any other similarity measure could be used as well. If a distance mea-
sure is employed, we require a distance to similarity conversion function. Nothing
speaks against using Shepard’s or Tenenbaum’s generalization function. Further-
more, it would be interesting to see the performance of a kernel function that
employs normalization by the human choice model on the similarity scores. In
a similar fashion, some similarity meta model could be set on top of the simi-
larity measurement process. It would also be thinkable to use a predicate-based
similarity measure in combination with some fuzzy interpretation of quantities
as a kernel. Such extensions of the similarity measuring part of kernels have
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hardly been investigated so far. We are positive that significant performance
gains could be achieved by implementing such models.

Concerning the mapping part of the kernel trick we would like to point out
that combining existing description elements by a general, data-independent
scheme (e.g. using the squared values) is probably only the second best solu-
tion to mapping. Instead, the best mapping should be identified by combining
promising description elements and evaluating their combined performance for
the given data. In earlier experiments, the author has found out that systematic
selection of description elements that explain the ground truth well (e.g. by
canonical correlation analysis, see Chapter 20) and multiplicative combination
leads to ’super-dimensions’ that can be used for highly effective mapping of fea-
ture spaces. In Chapter 20 we will develop this idea further and introduce an
evaluation measure for this selection procedure.

The selection of the best kernel for a given problem is an empiric problem.
It is advisable to try all standard kernels on a training set and use the one that
performs best. With the extensions sketched above the space of possible opti-
mization becomes rather large. Therefore, in a first step only the main options
should be evaluated and the details should be set in a fine-tuning iteration.

Kernels are not only used in the support vector machine but have found
way into various methods for information filtering and categorization. Gener-
ally, a kernel can be used wherever two description vectors are compared. In
the next section we will introduce linear discriminant analysis, a method some-
where between categorization and evaluation, where kernels are used. Principal
component analysis can be enhanced, if the covariance matrix χ = F ′F is not
computed of the elements directly but through a kernel: χ = k(F, F ). If the
kernel function is able to handle non-linear data, this type of analysis becomes
applicable for such data as well.

In conclusion, every symmetric positive function can be a kernel. Most rel-
evant are mapping functions that add – cleverly defined – dimensions and simi-
larity functions that measure similarity like humans do and as the ground truth
represents it. We encourage the reader to combine existing generalization func-
tions with the distance measures in the appendix in order to arrive at new,
tailor-made kernels for media understanding.

18.4 Advanced Risk Minimization Methods

In this section we introduce some further risk minimization techniques, most
of which are derived from the support vector machine. First, we discuss two
derivates/applications of the SVM: the one-class neighbor machine and support
vector regression. Then, we describe the structured SVM, an alternative to using
cascades of SVM instances for browsing applications. Eventually, we explain
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linear discriminant analysis as a classifier. The latter method as a performance
measure is discussed in Chapter 20.

The one class neighbor machine is a variant of the standard SVM which
considers the two classes to be normal samples (1) or abnormal ones (−1). In
practical application, the one class neighbor machine is often combined with
domain-specific similarity measures (kernels). For example, in text classification
it is common to use the Hamming distance, which is inverse to the city block
metric in predicate space, as a kernel function for word similarity.

Support vector regression (SVR) combines the standard model of the SVM
with the regression loss function, which results in the following optimization
problem.

Lai =
∑

ai −
∑
i,j

(ai − a∗i )(aj − a∗j )fifj → max (18.29)

We can see two major differences. SVR does not require a ground truth
– of course, since we want to approximate the data. The approach is, again,
to rely on the support vectors, i.e. those with non-zero Lagrange multipliers.
The second difference lies in the multipliers. Here, those referring to Constraint
18.13 are denoted as a∗i while those referring to Equation 18.12 are denoted as
ai. That is, we aim at a set of support vectors (that define the regression line)
that produce a minimal squared error.

The SVR is a very efficient implementation of regression. It can be computed
quickly without the need of minimizing the total squared errors. Since the
method relies only on few support vectors, it is less prone to outliers than the
mean-like linear regression approach. Furthermore, the usage of kernels for the
fifj product allows the computation of a regression for non-linearly structured
data with a simple computation scheme. Today, SVR is employed in many
media understanding applications where the output is used as input for another
feature extraction and categorization cycle. One example is the recognition of
emotions in audiovisual content that is used for semantic categorization of video
clips. Here, SVR provides the emotion cues which are made subject to another
categorization process.

The structured SVM aims at overcoming the limitations of two-class cate-
gorization. Instead of using cascades of support vector machines, the following
goal function is suggested.

δ =
2

√
w0w0

− c
∑

max
c∈C

(
m(yi, c) + w.f(fi, c)− w.f(fi, yi)

)
→ max (18.30)

This is the goal function without slack variables. The second term adds
a penalty for dissimilarity of the ground truth category yi to the best-fitting
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member of a set of categories C (m being some distance function). It has three
components: the similarity of the ground truth category to members of C, a
feature score for the distance of the description fi to the category c (positive
influence) and one for the distance to yi (negative influence). The term feature
score needs an explanation. This is a feature transformation f applied on the
joint vector of description data fi (or even the underlying sample data oi) and
the category. That is, the semantic value of the category is used for description
extraction. Of course, the reasonable definition of function f depends heavily
on the application of the structured SVM. It is, in summary, a straightforward
extension of the SVM for multi-class categorization.

Before we close the chapter with linear discriminant analysis, we would like
to mention the relevance vector machine, which is only in name and application
similar to the SVM. The basic idea here is, too, categorization in the style of
linear regression. The model and training, however, are fundamentally different.
The relevance vector machine is based on probabilistic inference. Parameters are
estimated from conditional probabilities. The essential training step is parameter
learning which is based on an expectation maximization scheme. Hence, the
model is more similar to those approaches discussed in the next chapter than to
risk minimization, which – as a principle – is not considered in this classifier.

µ1 µ2

Figure 18.9: Principle of Linear Discriminant Analysis.

Linear discriminant analysis (LDA) is a simple categorization scheme that
distinguishes two classes by their means. Figure 18.9 illustrates the principle.
Two classes (their descriptions) are assumed to be of Gaussian shape, which
allows to describe them roughly by their means. The training process of LDA is
the approximation of these distributions. Then, the categorization is based on
a simple decision rule.

(fi − µ1)Σ(fi − µ1) < (fi − µ2)Σ(fi − µ2)→ yi = 1 else yi = 2 (18.31)

Here, fi is the object under investigation, yi is its class, Σ is a covariance ma-
trix of the description elements. Hence, LDA applies the Mahalanobis distance
to define a maximum likelihood classifier.
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LDA is today hardly used as a classifier, but rather as a performance measure.
Fisher LDA is a signal-noise ratio based on the LDA idea.

SNR =
m(µ1, µ2)∑
i,jm(µi, fij)

→ max (18.32)

Here, m is some distance measure and fij refers to those description vectors
fj that belong according to LDA categorization to the class defined by µi. That
is, SNR is optimal if the distance between classes is maximal and the distance
of class members to the class center is minimal. This goal is highly similar to
the one of canonical correlation analysis, which is discussed in Chapter 20.

LDA benefits from the application of kernel functions. If we replace the dis-
tances fi−µj by an appropriate kernel function, LDA becomes able to categorize
non-linear data as well.

In conclusion, this chapter introduces a number of separating categorization
methods that have in common that they try to minimize the risk of misclassi-
fication. Most of these models are very simple and rigid, but make use of ker-
nel functions for the separation of data sets with a sophisticated topology. The
common disadvantage of risk-based methods is their dependency on high-quality
ground truth. Their advantages are excellent performance due to minimization
of the dimensionality problem. Support vector machine and support vector re-
gression are, furthermore, very robust against outliers, since they rely only on
those data vectors that separate the classes of the ground truth. Linear dis-
criminant analysis connects the risk-based separators to the hedgers discussed
in the next chapter where dynamic methods are used to construct statistical
descriptions of semantic categories.



Chapter 19

Optimization Models

Starts with an introduction to fuzzy retrieval methods, explains the self-organizing
map, boosting algorithms, mixture models for categorization and density estima-
tion, and closes with a sketch of important global optimization techniques.

19.1 Fuzzy Similarity Measurement

In this chapter, we describe categorization methods that extend the fundamental
methods introduced in the first part of the book by a learning algorithm that
tries to adapt the categorization model optimally to reality/ground truth. The
expert reader will find the list of methods heterogeneous. We start with fuzzy
information retrieval (this section), continue with meta-algorithms for learning
(next section), introduce mixture models for the representation of real-world
distributions of properties (Section 19.3) and close with global optimization al-
gorithms that can be used for categorization. All of the presented methods have
in common that they are meta-models based on simple categorization schemes.
The fuzzy methods presented in this section extend similarity measurement in
the vector space model. The self-organizing map introduced in the next sec-
tion extends the k-means algorithm. Gaussian mixture models merge the idea
of expectation maximization with description normalization. Etc. Not all of
the presented models are practical categorization algorithms. The core idea of
fuzzy retrieval is a form of similarity measurement. While the self-organizing
map is a concrete classifier, boosting (also explained in the second section) is a
meta-model that can be implemented with any set of (weak) classifiers. Gaus-
sian mixture models may be seen as a form of density estimation as well as a

351
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quantization-based classifier. The global optimization algorithms are fundamen-
tal schemes that can be employed for model-based categorization (e.g. dynamic
programming as reinforcement learning) as well as on other optimization prob-
lems.

The last chapter discussed methods that try to achieve optimal learning by
a model as simple as possible. The methods in this chapter aim at building the
best possible model and to believe rather in the prognosis of the model than in
the given information.

This section targets at the fuzzy information retrieval model. Mostly applied
in text understanding, it can be used wherever logical expressions (boolean re-
trieval, e.g. in the form of decision trees) are used for categorization. The fuzzy
model reduces the rigidity of this form of categorization.

While the standard decision tree assumes all conditions to be AND-connected,
the boolean retrieval model allows in the simplest form also OR connections. An
OR connection would be equivalent to two unconnected subtrees in a decision
tree. The two basic boolean operators are defined as shown on the left side of
Figure 19.1. For a given media object, the co-existence of two description ele-
ments is defined as the intersection of all occurrences of the stimuli related to
the description elements. The OR connection is defined as the set that includes
all occurrences of one or both stimuli.

The principle can be understood best from an example. Let o be a text
document described by terms fi. If we want to measure the similarity of o to a
query oq by boolean retrieval (oq is, for example, ’house AND price OR flat AND
rent’), we require a similarity function m(o, oq) that counts the co-occurrences of
the AND-connected terms first and then, sums them up for the OR expression.
The higher the resulting score, the more similar o to oq. Hence, boolean retrieval
is equivalent to a forest of decision trees for binary predicates.

f1 ∧ f2

f1 ∨ f2

f1 ∧ f2 f1 ∨ f2

a) b)

Media Object

Figure 19.1: Boolean (a) and Fuzzy (b) Similarity Operators.

The fuzzy retrieval model extends the scheme of boolean retrieval to descrip-
tion elements that are quantities. This proceeding connects it to the dual process
models briefly discussed in Chapter 17. All that is required is the re-definition
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of the logical operators. The AND operator is replaced by the maximum func-
tion while the OR operator is replaced by the minimum function. Figure 19.1
illustrates the idea. If we ask for the likelihood of joint appearance of two de-
scriptions f1, f2, the fuzzy standard model returns the frequency of appearance
of the less frequent stimulus. Instead of the superset, the likelihood of the more
frequent stimulus is used for the OR operator.

For the text retrieval example this means that terms are not given as predi-
cates but, for example, as frequencies of the following form.

fi =
number of occurrences of term i

number of occurrences of all terms in the document
(19.1)

Then, m(o, f1 ∧ f2) = min(f1, f2) and m(o, f1 ∨ f2) = max(f1, f2). As the
figure shows, the definitions of the fuzzy operators may lead to significant devi-
ations in the behavior of the model. If the description elements are predicates,
the results of the fuzzy model are similar to the boolean model. However, for
quantities the model judges similarity fundamentally different – depending on
the relative magnitudes of the logically connected description elements.

The presented model is just one fuzzy retrieval model. Extended forms asso-
ciate different weights depending on the type of logical connection (e.g. Waller-
Kraft model) or depending on the order of the terms (e.g. Paice model). Gen-
erally, the approach is similar to the dual process model operators presented in
Appendix B.4. As we will see in Chapter 28, these operators try to solve the
same problem as the fuzzy operators: transforming a predicate-based model to
the domain of quantitative descriptions. The major difference is the importance
of the OR operator in fuzzy retrieval, which is irrelevant in dual process models.

The fuzzy retrieval model is mostly used for text retrieval, even though it
could be applied on all forms of media data. For example, the model could
be used for rule-based video shot segmentation: A wipe could be defined as an
OR-connected list of fundamental types (vertical slide in, diamond wipe, etc.).
Many more applications are thinkable.

In summary, fuzzy similarity measurement enables the usage of boolean sim-
ilarity expressions on quantitative data. It is, therefore, better able to represent
the polysemy in media objects which goes hand in hand with greater robust-
ness against noise. Similarity measurement happens on the micro-level. In the
next section, we move from this level to the macro level and investigate dynamic
(learning) extensions of simple categorization methods.

19.2 Learning Meta-Models

We investigate two learning categorization models in this section. The first is the
Self-Organizing Map, an algorithm based on the k-means classifier. The second
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– more general – scheme is Boosting, a learning algorithm that can be based on
arbitrary classifiers, though it is usually based on simple decision rules (weak
classifiers or base classifiers).

The self-organizing map (SOM) was defined by Kohonen [201] as a two layer
feed-forward neural network for unsupervised learning. The neural perspective
of the SOM will be discussed in Chapter 29. Here, we focus on the learning
algorithm. The fundamental idea of the SOM is that the high-dimensional input
data is mapped on a two-dimensional surface in a way that similar objects lie
in close proximity to each other. The fundamental idea is similar to multi-
dimensional scaling, as discussed in Chapter 7. As we will see below, the SOM,
like multi-dimensional scaling, can easily be extended to n-dimensional output
maps.

The model of the SOM is – like the one of k-means – simply a grid of references
(also called codebook vectors, because they are used to encode/quantize the input
vectors). One reference describes one cluster. Since the SOM output map is two-
dimensional, it is common to use a rectangular or a hexagonal grid of references.
The categorization process for an object o represented by description f is a simple
loop over all codebook vectors mxy, where for each reference the distance to f is
computed. Typically employed distance measures are the city block norm and
Euclidean distance. The reference with minimum distance wins (hence, winning
node) and the input vector is associated with this cluster.

So far, the SOM is rather a special form of k-means, since it prescribes a
particular form of output. What makes the SOM superior over k-means is the
learning algorithm. It consists of the following steps.

1. Initialization of the codebook vectors: The vectors may be set to random
locations or arranged in the form of a rectangular or hexagonal grid.

2. Repeated learning of all input vectors fi:

(a) Identification of the winning node for fi. In the learning step, the
Euclidean distance is usually used for distance measurement.

(b) Adaptation of the location of the winning node and of its neighbors
by the following weighting function.

mxy = mxy − αk(mxy − fi) (19.2)

Here, α is a learning rate. Typically, the learning process is performed
twice, first with higher learning rate (e.g. α = 5%) and then with
lower rate (e.g. α = 3%). Function k is a neighborhood kernel that
penalizes large distances from the reference to the sample. Figure
19.2 shows two examples.
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3. Stop the learning process when the map converges.

Distance

Magnitude of Adaptation

Figure 19.2: Neighborhood Kernels for Self-Organizing Maps.

The strength of the SOM lies in the application of the learning function on
the winning node and its neighbors as well as in the idea of the neighborhood
kernel. The latter function causes that codebook vectors close to the input
sample are moved more into this direction than vectors that are far from the
sample. Figure 19.3 illustrates the principle. Iterated multiple times over all
samples, the SOM gathers more codebook vectors in densely populated areas of
feature space than in less densely populated ones. This behavior – also referred
to as neural gas – is in line with the idea of the Krumhansl density model. The
Gaussian neighborhood kernel (solid line in Figure 19.2) implements it perfectly.
Alternatively, the bubble kernel (dashed line in the figure) implements a k-means
classifier with learning references. The learning is the same for all vectors in the
neighborhood and zero outside.

Candidate

Winning Node

Figure 19.3: Learning of References in the Self-Organizing Map.

When does the learning process converge? When the quantization error is
minimal. In the context of the SOM, this evaluation measure is defined as
follows.

q =
∑
i

|m̄i − xi| (19.3)



356 CHAPTER 19. OPTIMIZATION MODELS

Here, m̄ is the winning node for sample xi. That is, the quantization error is
minimal, if the references are as close to the data as possible (hence, codebook
vectors). For the purpose of quantization, the codebook vectors can also be
used instead of the input data. This form of the SOM is called linear vector
quantization. A second variant of the SOM is the tree-structured SOM that
allows to extend each cluster to an entire map. Then, the codebook vector on the
higher level represents the mean (however defined) of the map on the subsequent
level. Unbalanced tree-structured maps are able to describe the cluster structure
of unbalanced feature spaces in great detail.

Above, we mentioned that the two-dimensional approach of the SOM can
easily be extended to an arbitrary number of dimensions. The SOM is limited
by the grid of codebook vectors and the two-dimensional definition of the neigh-
borhood kernels. Hence, if these two aspects are generalized to n dimensions
– which is straightforward, then the algorithm can be used in the same way as
multi-dimensional scaling.

Obviously, the SOM is a hedger – on the cluster level where one reference
represents one cluster. However, it is not possible to assign a semantic label
to one cluster beforehand. All that can be provided is the number of clusters.
Instead, the learning algorithm uses as many references as it needs to describe a
particular accumulation point in the input data. Per se, the SOM is a clustering
procedure. The semantic labels can only be assigned after the learning process
and will, then, usually span over multiple clusters. Since these groups of clusters
are usually not of elliptical shape and sometimes not even joint, the SOM may
– on the semantic level – also be classified as an intermediate categorization
method.

Initialize Model

Evaluation Sufficient?

Yes

No

Categorization

Enhancement Classifiers

Figure 19.4: Boosting Process.

Boosting is the machine learning meta-algorithm par excellence. Figure 19.4
illustrates the principle. The central element is the classifier model, which is a
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set of individual classifiers built from a pool of classifiers (rightmost element).
In the beginning, the model is initialized empty, with one classifier or with a
set of best starting points. Then, the model is iteratively enhanced until a pre-
defined quality criterion is met. This criterion may be based on an evaluation
measure (e.g. precision/recall) or a loss function. The enhancement process
is typically adding one classifier to the model in one iteration. Of course, the
algorithm can also be performed the other way around by initializing the model
with all available classifiers and enhancing it by removing badly performing ones.
This shows that the basic principle of boosting is actually very similar (if not
equivalent) to the one of feature selection. The major difference is the level of
operation: contextualization here, summarization there.

Above, we mentioned that any form of classifier can be part of a boosting
algorithm. Practically however, simple decision rules of the same form as those
used in a decision tree are mostly employed. Such classifiers are applicable
as soon as they perform different from chance (success rate of other than 50%).
Classifiers performing worse than chance are also applicable, because they can be
used in reversed form. This implies that such weak classifiers are primarily used
to differentiate the input data in two classes (retrieval application), though the
principle can be applied to browsing applications as well. The general boosting
algorithm combined with weak classifiers can be employed to build a decision
tree for the training data. Since the algorithm includes evaluation, the input
data must contain a ground truth. Like the decision tree algorithm introduced
in the first part of the book, boosting is generally prone to overfitting.

One concrete implementation of the boosting principle that is comparatively
immune against overfitting is AdaBoost. This algorithm performs a separation
of the input data f into two classes {−1, 1} by the following decision rule.

classifyAdaBoost = sgn
(∑

wi.ci(f)
)

(19.4)

Here, wi is the weight of the i-th (weak) classifier ci. The categorization will
be optimal, if the following loss function is minimal.

∑
e−yj .classifyAdaBoost(fj) → min (19.5)

In the loss function, yj is the ground truth of description fj . The remarkable
application of Shepard’s law and multiplicative similarity measurement causes
the loss to approach the minimum, if the categorization results match the ground
truth perfectly.

In the decision rule, the classifiers are given and the weights are variable. Set-
ting the weights requires a training process. The AdaBoost learning algorithm
performs the following steps on an initially empty model.
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1. Initialize a set of loss variables atj = 1
n , where j is the iterator over the

n training samples and t is the iterator over the learning cycles. The loss
variables express, how well the individual training samples fj are at time
t already represented by the model.

2. Add the classifier ci from the pool as ct that minimizes the following ex-
pression.

lt =
∑

j∈
{

1:n
∣∣ci(fj)6=yj} a

t
j → min (19.6)

The loss lt describes the contribution of classifier ct to the model at
time/iteration t. If it is zero, the classification is perfect. If lt = 1, all
classifications were wrong and 1− ct is a perfect classifier. If lt = 1

2 , then
the classifier is as arbitrary as a random classifier.

3. For the added classifier ct, set the weight wt (equivalent to wi above) as
follows.

wt =
1
2

log
(1− lt

lt

)
(19.7)

Please note that wt = 0 if lt = 1
2 . Better classifiers receive positive weights.

Worse classifiers receive negative weights which turns them in the decision
rule to positive classifiers.

4. Evaluate the classifier by Equation 19.5. If this expression is below some
threshold ε, stop the boosting process, otherwise continue with the next
step.

5. Update the set of loss variables for the next iteration by the following
function.

at+1
j = atj .e

−wtct(fj)yj (19.8)

Hence, the loss decreases (weighted by wt) for correct classifications (expo-
nential term smaller than one), and increases otherwise (exponential term
greater than one).

6. Eventually, return to Step 2.
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AdaBoost is a very elegant algorithm that makes use of the two class labels
{−1, 1}. The additional usage of a generalization function creates human-like
similarity judgment. Naturally, the algorithm separates feature space. It creates
a tailor-made decision tree – if the weights are seen as part of the individual
classifiers – that fits as close as possible to the ground truth.

Both introduced meta-algorithms rely on the provided ground truth. If it is
incomplete or unbalanced, the result may bo overfitting and inferior performance
on real-world data. Furthermore, both approaches are sensitive to noise and out-
liers. The SOM deviates towards outliers, while AdaBoost creates an inadequate
representation. However, the iterative learning procedures implemented in the
two algorithms help to rise the semantic level of the categorization results. This
semantically higher level is represented by the classification model (references,
weights). In the next section, we introduce an approach to represent semantics
in complex density functions.

19.3 Advanced Densities: Mixture Models

The estimation of density functions is a fundamental problem of machine learn-
ing and media understanding. For example, the application of Bayesian methods
requires the transformation of the given training data in a set of confusion ma-
trices (conditional probability distributions). In the first part of the book, we
introduced two fundamental techniques for the estimation of density functions:
Gibbs sampling and expectation maximization. We did not make any assump-
tions about the shape of the probability distributions. Please note that the
statement that description elements should be uniformly distributed has noth-
ing to do with the probability distributions of joint events (e.g. the likelihood of
co-occurrence of a particular query and a description).

In this section, we go one step further by structuring the density functions
that should be estimated. We introduce the mixture model concept and use it
for direct categorization as well as indirect application in probabilistic inference
algorithms. We will see that mixtures fit to recent psychological results about
human cognition.

For our purpose, a mixture model can be defined as a linearly weighted com-
bination of fundamental probability distributions. Formally:

Q(x) =
∑

wiPi(x, ai) (19.9)

Here, Pi is a probability function of random event x with parameter set
ai. If all probabilities are of the same type (e.g. Gaussian), we speak of a
parametric family (e.g. means and standard deviations). Obviously, a mixture
Q of probability functions with weights wi ≥ 0 is convex. By default, we also
have the condition

∑
wi = 1.
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Mixtures can be employed in the same way as other distributions. Their main
advantage lies in the form of construction. A mixture built from smooth density
functions can very well be employed for the description of the convex hull of a
data set that gathers around an accumulation point. Such accumulation points
are – as we have seen – typical for feature spaces derived from media data sets.
Psychological findings support this view. Therefore, the authors of [182] base
their concept of stimulus norms – a form of prototypical concept representation
(see Chapter 17) – on mixtures of Gaussian probability distributions. The norms
are constructed from experience (samples) and used as references in the human
cognitive categorization process.

Random
Initialization

Expectation

Quality

MaximizationMixture

Figure 19.5: Building Process for Mixture Models.

What is good for humans should also be good for machines. The only problem
in the application of mixture models for categorization is the estimation of the
unknown parameters wi, ai. For the sake of simplicity, we assume the type of
probability distribution as given (for example, a parametric family of Gaussians).
The standard solution to the parameter estimation problem is the expectation
maximization algorithm as depicted in Figure 19.5. The central mixture model
is first initialized randomly, then iteratively used to estimate the model quality
(e.g. in the form of categorization performance) and to improve the model based
on the results.

In detail, the following steps are performed after the random initialization.

1. Expectation: Estimate the parameters from the training data. For this
purpose we define a set of membership values y in the following way.

yij =
wiPi(xj , ai)
Q(xj)

(19.10)



19.3. ADVANCED DENSITIES: MIXTURE MODELS 361

The membership value yij can be interpreted as the relative contribution
of the i-th probability density to explain sample xj .

2. Maximization: Refine the parameters based on the membership values. In
particular, the weights can be set as follows.

wi =

∑n
j=1 yij

n
(19.11)

That is, the new weight wi of probability density pi is the average mem-
bership value over all n training samples. The refinement of the density
parameters depends on the form of distribution. For Gaussian functions
the following rules can be employed.

µi =

∑
j yijxj∑
j yij

(19.12)

σi =

√∑
j yij(xj − µi)′(xj − µi)∑

j yij
(19.13)

Hence, the mean of the i-th density function is just the expected value of
the membership values. The standard deviation measures over the squared
distances to the mean.

3. Loop: Return to the first step until the categorization quality is above a
pre-set threshold.

Figure 19.6: Example of a Simple Mixture Application.

Mixture models can, as stated, be used to represent clouds of data. Figure
19.6 shows an example. The resulting description can be used in one of two
ways.
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• Directly as a classifier

• As the model of a probabilistic classifier

An example for the first usage is the Gaussian Mixture Model classifier
(GMM). The GMM uses the maximum likelihood principle for categorization.
In the training step, each class i is represented by one mixture Qi. In the cate-
gorization step, the input object’s description f is weighted by each mixture and
the one with maximum likelihood is chosen. Hence, the class label is derived as:

classifyGMM = arg max
i
qi(f) (19.14)

The only information that needs to be provided is the number of classes n.
Before we discuss the advantages and disadvantages of the GMM approach we
would like to point out that the second usage is, typically, the computation of
the confusion matrices required for a hidden Markov model by expectation max-
imization of Gaussian mixtures. There, the probabilistic inference is performed
as described in the first part of the book.

The major advantage of the GMM is that it fits naturally with the structure
of feature spaces derived from media objects. The analogy to human perception
and cognition supports this argument. On the other hand, GMM are prone to
entering local optima. In the next section we will discuss several algorithms that
are able to escape such suboptimal situations. The GMM is not. Furthermore,
the expectation maximization algorithm is not deterministic. For suitable data,
it will show dynamic – even chaotic – behavior and oscillate between suboptimal
solutions for parameters and weights. In Chapter 26 we will discuss the prop-
erties of such dynamic systems. The practical consequence is that the GMM
algorithm will not always terminate – depending on the random initialization
and the input data.

Another problem of random initialization is that the training process may
result in two or more mixtures (each one representing a different semantic cat-
egory) that are very similar to each other. In this case, the training process
has to be repeated for different starting points. Since GMM training is time-
consuming, the usage of this classifier has a negative effect on the performance
of the media understanding process. However, the actual maximum likelihood
categorization can be performed very quickly and mixtures are capable to repre-
sent the polysemy in the input data well. For these reasons, GMM is a popular
categorization method for Gaussian-shaped feature spaces and a popular density
estimator for Bayesian methods.
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19.4 From Local to Global Optimization

In the last section we move from concrete machine learning techniques to a gen-
eral problem of categorization methods: escaping from a local optimum towards
the global one. This question is relevant, because – as we have seen – the learn-
ing algorithms do not solve a strict optimization problem. Instead, the solution
depends on the input data and parameters (samples, references, etc.). This state-
ment is equally true for the self-organizing map, certain boosting algorithms and
Gaussian mixture models.

Below, we discuss three fundamental escape techniques:

• Simulated annealing

• Genetic algorithms

• Dynamic programming

All three global optimization approaches stem from operations research, i.e.
they are not machine learning-specific and, hence, no categorization techniques.
However, many categorization methods are based on these techniques, which is
why we consider it beneficial to know their fundamental principles. The discus-
sion in the third part will partially be based on the knowledge presented in this
section. Of course, we do not intend to give a full explanation of the algorithms.
Rather, we review them from the media understanding perspective.

Time

Maximum of Change

Figure 19.7: Escape from Local Optima.

Figure 19.7 illustrates the escape problem. The central curve represents the
goal function of an optimization problem. If we assume a minimization problem,
we have two local minima (middle, right) and one global minimum (left). A brute
force search algorithm that searches for the global optimum from the right (e.g.
hill climbing) may terminate in the location marked by the rightmost x. Only
after considerable time would it reach the global minimum.
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The first escape principle that we would like to discuss is simulated annealing.
The fundamental idea is expressed by the dashed line in Figure 19.7. Whatever
optimization algorithm is used, the search is limited over time in a way that the
constraints of the search are tightened with increasing time. For example, for
the brute force search algorithm the dashed line of maximal change is moved
towards zero over time. Depending on the speed, the algorithm may be able to
jump over the rightmost hill, but probably not over the one in the center. In
consequence, the central minimum would be regarded as the global minimum.

What is the use of simulated annealing? The example shows that it leads to
a suboptimal result. Why should we want that? Simulated annealing limits the
search process, which is a very important property in optimization. Optimization
algorithms are distinguished by their computational complexity. Being able
to guarantee that they terminate in acceptable time is valuable. Simulated
annealing provides this ability in a somehow natural fashion. Over time, the
initially hot search process freezes in at a – hopefully, good – optimum. The
quality of the solution, though, does not depend on the annealing but on the
search algorithm. Simulated annealing processes are implemented in various
forms. For example, in Chapter 29 we will encounter the Boltzmann machine
that uses a cooling scheme for the limitation of the classifier learning process. In
the same way, simulated annealing could be used in Gaussian mixture models
to avoid chaotic oscillation in the training step. In fact, the reduction of the
learning rate in self-organizing maps is a coarse form of annealing.

Random
Initialization

Crossover

Mutation

EvaluationPool

Best
Solution

Figure 19.8: Process of the Genetic Algorithm.

The genetic algorithm (GA) is one search algorithm that could be combined
with simulated annealing, though the author is not aware that this would have
been tried so far. The search process is visualized in Figure 19.8. The central
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element is a pool of gene strings. One gene encodes one solution for the opti-
mization problem. In the classic form, genes are binary strings. Extended forms
allow sequences of symbols.

After random initialization, the GA tries to enhance the gene pool by iterative
application of crossover, mutation and selection operations. In a crossover, two
gene strings are halved and merged. Mutation means that n per cent of the
symbols in one string are mutated randomly. Selection is based on evaluation
(typically, by the goal function). The n best gene strings are kept, the rest is
thrown away. Repeating this scheme leads over time to improvement in the
gene pool, though it is not necessarily the case that the last iteration contains
the best solution. Through crossover and mutation, the genome can degenerate
which serves as an escape algorithm. The major advantages of the GA are the
parallel investigation of search space and the possibility of escaping from local
optima through mutation.

The GA can be employed to solve arbitrary optimization problems including
categorization. Like a Bayesian network, the GA shifts the complexity from
solving a problem to stating it. If the genome is binary, the two operators are
well defined. All that is required then, is the definition of the structure of the
gene strings and of the optimization function. The latter function is equivalent
to the evaluation measure in media understanding. Hence, defining the gene
string remains as the only problem. It is an interesting idea that – due to the
generality of the approach – almost any categorization scheme can be expressed
in a GA genome. Furthermore, it is thinkable to combine the GA with annealing,
for example, by cooling down the rate of mutations over time/iterations. This
proceeding would increase the probability that the final gene pool includes the
achieved optimum.

We would like to close this section with dynamic programming, a very gen-
eral optimization model that is characterized by divide and conquer analysis,
recursive search and reinforcement learning. The latter principle was already
mentioned in Chapter 17. Recursive search is, for example, used in the inference
algorithms of Markov processes, but as well in dynamic time warping and gene
sequence alignment. Divide and conquer is a general principle of information
analysis closely linked to the top down strategy.

In the context of media understanding, Figure 19.9 brings the three principles
of dynamic programming together. The problem is, for example, a categorization
process. In the first step, the global problem is split into subproblems. The
division may, for example, be performed along the data (e.g. one solution per
group). In the conquer step, the subproblem is solved. The resulting subsolution
is made subject to evaluation which leads to a reward. This is the reinforcement
step of the approach. In reinforcement learning, we do not work with ground
truth but with penalizing losses based on rewards for correct categorizations.
Hence, the optimization goal of the categorization process must be maximization
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of rewards. Formally:

∑
t

αtrt → max (19.15)

Here, rt is the reward at time t (e.g. one application of the classifier) and α is
a down-scaling factor for future rewards, which are – for machines as for humans
– the more interesting the earlier they are brought in. Reinforcement learning
is as independent a principle as the divide and conquer approach and recursive
search. It can be implemented in combination with dynamic programming but
as well by a brute force algorithm that maximizes the total reward by trying all
possible solutions. A practically more relevant form is the description and pre-
diction of desirable rewards by conditional density functions of the form P (r|a),
where r is the reward for action a, for example, a particular categorization op-
eration. Following this path, we once again end up in the density estimation
problem.

Returning to dynamic programming, eventually, the individually solved sub-
problems are merged to a global solution. This step is a form of boosting. The
other way around, if the (weak) classifiers are interpreted as conquer steps, the
AdaBoost algorithm may be seen as a dynamic programming algorithm. The
entire algorithm will usually be implemented recursively, i.e. as nested dynamic
programming where the optimal solution is derived from rewards for atomic sub-
problems. As we have seen in earlier chapters, recursive algorithms often lead
to superior computational performance, because they manage to alter a fraction
of the processing requirements to memory requirements.

In conclusion of this section, the genetic algorithm and dynamic programming
are two principal optimization approaches that can be used for categorization
in media understanding. In combination with simulated annealing, they can
be used to implement almost arbitrary categorization schemes. Generally, the
algorithms have a positive effect on the dimensionality problem of media un-
derstanding since they search as efficiently for high quality optima as possible.
Their common drawback is a tendency to emphasize the low-level descriptions
in media understanding, because they follow the topology of feature space. This
behavior does not help to close the semantic gap.

This chapter and the last should provide a fair toolbox of state-of-the-art
categorization methods for media understanding. SVM and GMM, for example,
are used in numerous single-media and multi-media analysis applications today.
However, their training requires more sophisticated performance evaluation tech-
niques than those discussed in the first part. Such methods are introduced in
the final chapter of the second part.
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Figure 19.9: Dynamic Programming Process with Reinforcement Learning.





Chapter 20

Advanced Evaluation

Introduces schemes for systematic classifier testing and evaluation, discusses
information-theoretic measures for evaluation and suggests measures and pro-
cesses for evaluation-based description refinement.

20.1 Cross Validation

In this last chapter of the second part we turn our attention to the evaluation
problem. Feature transformations summarize media content and relate it to
templates. Information filtering improves the data quality of the media descrip-
tions. Categorization reduces descriptions to concepts. Now, the evaluation step
aims at the measurement of the practical quality of the media understanding sys-
tem. In the first part, we already laid the basis and introduced the fundamental
components of the evaluation process as well as the most relevant measures.

In this chapter, we generalize the methods introduced in the first part. The
first section focusses on the macro process of evaluation. We replace the arbitrary
separation of world information into training data and test data by a systematic
process of validation. The second section generalizes the measurement process.
The ground truth-based measures are positioned in an evaluation framework that
can be used to assess arbitrary categorization methods. Section 20.3 abstracts
from concrete measures for media understanding quality to general measures for
data/information quality. In the last section of the chapter, we return to the
practical side of evaluation and introduce a number of systematic measures for
the overall quality of the media description process. These measures establish
the link back to the first chapter of this part, in which we reasoned over the
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properties of good feature transformations.
This section is dedicated to the evaluation process. However, before we go in

medias res we would like to emphasize that the evaluation process is independent
of the actual measurement goal. The last paragraph had the hidden message
that there are two different evaluation problems.

• Performance with respect to world information

• Information-theoretic and statistical data quality

The same process can be employed to evaluate both domains. The first
problem is out of question, since media understanding is a practical domain and
its acceptance stands and falls with the computer’s performance in comparison to
the human competitor. Performance measurement based on world information
investigates this aspect.

But why should it be interesting to measure the data quality, in particular,
of the descriptions? What does it matter if the entropy is bad as long as recall
and precision are good? The practical answer is that the two evaluation domains
are related. It is very unlikely that a media understanding system produces high
F1 scores for recall and precision if the variance in the descriptions is inferior.
Furthermore, often it is not possible to provide satisfactory world information
for evaluation. We mentioned several times that providing a well-balanced, com-
plete ground truth is a complex, time- and resource-consuming tasks. The more
general the problem domain, the harder the tasks becomes.

Eventually, empirical results are not always trustworthy. Empirical statistics
rely on the law of great numbers. As we will see in Chapter 23, humans tend to
derive from the law of great numbers a law of small numbers, i.e. the statistical
laws should also be more or less valid for small samples – which is nonsense.
Hence, if the ground truth is too limited (though, how much is too limited?),
then empirical results will not truly be empirical. In this sense, Nigel Barley
relates an interesting story in his book The Innocent Anthropologist [15]. When
he finds out that the rainmakers of the Dowayo tribe use found marbles for
the rainmaking ritual, he presents a bought marble to one rainmaker and asks
him whether he could also use this one for rainmaking. The rainmaker answers:
”How should I know? I have not tried it yet.” Empirical results on a too small
base of samples are questionable.

On the other hand, the evaluation of data quality is an option for evaluation
that is always available and that indicates how good the performance might be
in the best case. Moreover, it indicates if the performance in terms of processing
power and memory usage is optimal – two factors that are highly relevant in the
resource-intensive domain of media understanding.

This stated, Figure 20.1 illustrates the Cross Validation process, the general
evaluation process based on ground truth information. It is an iterative process
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Figure 20.1: Cross Validation Process.

in which the available world information is repeatedly split into a training set and
a test set. The first set is employed to train the classifier under consideration.
The second set is employed to evaluate the classifier. The resulting performance
values are aggregated (e.g. averaged) over the iterations of the validation process.

The essential property of cross validation is that each practically relevant
group/concept/class/etc. is evaluated at least once. Hence, the resulting perfor-
mance value should include all practically relevant aspects of the classifier. It
goes without saying that the statistical averaging of the individual performance
values will only be appropriate if the variance as a form of belief – is included.

Normally, ground truth categories will not be mixed in training set and test
set. That is, one group (semantic concept) will either be part of the training set
or of the test set. Practically, cross validation with mixing of semantic concepts
may be seen as a generalization of the standard approach. In a strict sense,
however, cross validation is an approach that measures the ability to predict some
semantic concepts from learnt knowledge representations about other semantic
concepts (hence the name).

One particular form of cross validation that is practically highly relevant is
Leave One Out Cross Validation (LOOCV). In LOOCV, the test set of each
iteration of the validation process consists of all members of exactly one class.
The world information about all other classes is used to train the classifier and
the remaining group is used to evaluate it. In consequence, LOOCV evaluates the
generalization power of the classifier, i.e. the ability of the classifier to estimate
group membership in the unknown group from the known groups. LOOCV
is a widespread method in science, because generalization is one of the most
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important abilities of a good classifier. Moreover, the limitation of the test set
to one class allows to conclude on shortcomings of the classifier for particular
semantic groups. Eventually, the training set will generally be larger than the
test set, which provides a bottom line for the learning potential of the classifier.
If LOOCV values are bad, they will probably be bad for most other evaluation
methods as well.

In conclusion, cross validation is the standard approach for comprehensive
evaluation of classifiers. It requires the existence of some form of world infor-
mation, most typically ground truth labels. Cross validation may be combined
with any form of performance measurement. In the next section, we introduce
a general graph-based scheme that fits validation naturally, because it does not
require the statistical aggregation of performance values.

20.2 Receiver Operating Characteristic Curves

After describing a systematic evaluation process in the last section, we use this
one to introduce a systematic measurement scheme. The Receiver Operating
Characteristic (ROC) curve can be used to visualize the evaluation results gained
for parameterizable classifiers as well as simple static categorization methods.
First, we discuss the history of the approach. Then, we introduce the contingency
table of evaluation as the foundation of ROC analysis. From the table we derive
advanced measures and the ROC curve itself. Eventually, we embed the ROC
curve in the cross validation process.

ROC analysis is a child of operations research. During the second world war,
it was developed as a tool for signal detection, i.e. the differentiation of signal
and noise in a categorization process. Originally, the approach was developed
for binary classification. That is the classification in two groups, for example,
{−1, 1} as performed by the support vector machine. However, the approach
can easily be generalized to classifiers that distinguish more than two classes. In
fact, this is merely an interpretation problem. We think that it is more precise to
characterize the ROC approach as an evaluation scheme for retrieval applications
rather than for binary classification.

The entire approach is based on world information (e.g. ground truth). After
training, the classifier under investigation is evaluated based on the number of
correct and false classifications it produces. These numbers are normalized by
the number of correct and false samples in the test set and, eventually, visualized
in a two-dimensional graph.

Table 20.1 is the contingency table of ground truth-based evaluation. It sum-
marizes the measures required for ROC analysis systematically. In retrieval, we
distinguish relevant and irrelevant items (the above-mentioned generalization
follows at the end of the section). This view is laid down in the ground truth.
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True Positives True Negatives Correct
Categorization(Hits) (Rejection)

False Negatives False Positives False(Misses) (False Alarms)

Relevant Items Irrelevant Items Sum
Ground Truth

Table 20.1: Possible Results of Categorization.

From the perspective of the categorization process, we distinguish correctly clas-
sified items and falsely classified items. Crossing out these two views results in
four measures for the performance of a categorization process on a given ground
truth. The true positives (TP) and the true negatives (TN) define the success
of categorization while the false positives (FP, error of first type) and the false
negatives (FN, error of second type) measure its failures.

From the measures in the contingency table, the following relevant measures
can be derived.

Recall =
TP

TP + FN
(20.1)

Precision =
TP

TP + FP
(20.2)

Fallout =
FP

TN + FP
(20.3)

F1Score =
TP

2TP + FP + FN
(20.4)

In ROC theory, the recall is also referred to as the true positives rate, because
the sum of true positives and false negatives gives the number of relevant (posi-
tive) items. Fallout is referred to as false positives rate, because true negatives
and false positives sum up to the irrelevant items.

ROC analysis is a visual method. It makes use of recall and fallout to define
a two-dimensional graph. Figure 20.2 shows an example. Both dimensions are
per se normalized to the interval [0, 1]. A classifier that is positioned along
the diagonal dashed line is a random classifier, because it produces an equal
number of true positives as of false positives. Hence, every classifier that moves
away from the diagonal is usaful. The area above the diagonal contains the
positive classifiers – where the upper left corner of the diagram is the optimum.
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False Positives Rate (Fallout)

True Positives Rate (Recall)

Random Line

A

B

C

Figure 20.2: Receiver Operating Characteristic Example.

Classifier B, for example approaches the optimum. The area below the diagonal
contains negative classifiers that can, for example, be used in the way of the
AdaBoost algorithm by taking the inverse of the classification output as the class
label. In this sense, the performance of classifier C is comparable to the one of
B. Eventually, the curve of classifier A shows the behavior of this classifier for
varying parameterization. The assumed case is a decision stump of the following
form.

fi < ti → 1 else 0 (20.5)

Curve A develops by varying threshold ti for description element fi. Of
course, the approach can easily be generalized by assuming ti to be a container
of parameters relevant for the categorization process. Then, the ROC line would
represent all results of a systematic search through the parameter space.

ROC analysis has one obvious advantage. Since it provides a systematic
visualization of evaluation measures, the user becomes able to understand any
categorization process as soon as he has understood one. ROC analysis shifts
the evaluation problem from measurement to visual interpretation. A typical
application of ROC curves is the comparative visualization of categorization
methods (e.g. evaluated by Weka). The one method and parametrization that
comes closest to the upper left or lower right corner can be chosen as the best.
Of course, this approach is only valid, if the ground truth is – once again –
representative for the real-world problem.

The embedding of ROC analysis in cross validation is straightforward. The
results of each iteration of the cross validation process can be visualized in the
ROC curve. After some time, a picture of the characteristic performance of the
classifier under investigation will emerge. Cross validation and ROC analysis
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are two systematic evaluation methods that fit together naturally.
The generalization of the ROC approach from retrieval problems (two classes:

positives/negatives) to browsing problems (n classes, each one with potentially
correct/false evaluations) requires the redefinition of the dimensions of the ROC
graph. We suggest using the weighted average of recall and fallout values over
all classes (expected value). For the recall formally:

TPR =
∑

TPi
TP + FN

(20.6)

Here, TPi is the number of true positives for the i-th class. TP and FN
stand for the total numbers of true positives and false negatives. Since the
sum of individual true positives equals the total number of true positives, the
definition does actually not change in the browsing case. The only difference is
that the performance per group is hidden in the ROC graph.

In conclusion, the value of ROC analysis lies in the uniformity of the ap-
proach. Understanding the principle means understanding all applications. In
combination with cross validation, ROC analysis is an expressive tool for ground
truth-based evaluation. In the next section, we discuss a systematic evaluation
approach that can do without world information.

20.3 Information-Theoretic Measures

We criticized it several times in the first two sections of this chapter, but a
comparison of media understanding solutions to human judgment is what we
eventually want to achieve. That given, it would also be desirable to estimate the
quality of the data that is being produced in the media understanding process.
The straightforward way to do that is by statistical analysis, as we proposed in
the information filtering chapters of the first and second part of the book. There
is, however, a second approach, that, though related to descriptive statistics, has
an independent existence in the world of computer science: information theory.
As we will see in this section, entropy in information theory and statistical
moments are two instances of the group of interestingness measures.

In this section, we deal with interestingness measures, in particular, infor-
mation entropy as defined by Shannon. We start by outlining the original ap-
plication scenario. Then, we state and discuss the most important measures
and relate them to their production processes. Eventually, we compare the
information-theoretic measures to already introduced measures (signal-noise ra-
tio, for example) and position them under the umbrella of interestingness mea-
sures.

Figure 20.3 illustrates the communication process that was the foundation
of Shannon’s reasoning about information-theoretic measurement in [333]. A
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Figure 20.3: Fundamental Model of Information Theory.

message needs to be transmitted from a source to a destination. The transmitter
controls the sending process. The receiver grabs the result. Noise pollutes the
communication channel. The entire process of communication and denoising can
be seen as a transducer, i.e. a dynamic system with the following signature.

yt = f(xt, αt) (20.7)
αt+1 = g(xt, αt) (20.8)

The output yt of the transducer f at time t depends on the input xt as well
as on the parametrization αt. The update function g of the latter depends on
the input and the state. This model of a transducer is applicable to a number of
dynamic systems, including the Kalman filter that will be introduced in Chapter
26 as well as the categorization methods discussed so far.

Shannon modeled the transducer for the communication problem as a Markov
process, which provides the link to the domain of media understanding. Markov
processes, as introduced in the first part, are able to represent arbitrary catego-
rization systems as well as communication problems. Hence, the measures pro-
posed for communication problems based on Markov processes are likewise appli-
cable to media understanding problems. Practically, the information-theoretic
analysis of media understanding stands on a sound basis. Like statistical mea-
sures, information-theoretic measures reveal fundamental properties of the media
understanding system under investigation.

The central measure of information theory is information entropy. It is of-
ten (silently) assumed, that entropy would be a somewhat natural property of
information systems as it is in physics. That is not the case. Shannon describes
the path to a good measure of information clearly in [333]. He defines desirable
properties as requirements of the process. Then, he scans the space of poten-
tial functions and eventually, decides on the Boltzmanm H Theorem as the best
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fitting measure for his purpose. We consider this view essential to understand
the potentials and limitations of information entropy. The isomorph formula for
discrete information entropy e1 goes as follows.

e(f) = −
∑

P (fi) log(P (fi)) (20.9)

Here, f is the output of the transducer, in our case, for example, a description
computed by some feature transformation. With P (x) we compute the likelihood
of appearance of output/description x in a sample (e.g. a feature space). The
negation is necessary, because the logarithm will for probabilities always be
below zero. Discussing the formula shows that the first term rises linearly while
the second falls over-linearly for rising probabilities. This tension creates an
interesting behavior in the evaluation process.

0 1
P (f1)

e(f)

Figure 20.4: Information Entropy Example.

What is so particular about information entropy? Figure 20.4 describes the
characteristics of the function for the case of f = {f1, f2}. Since the space
of possible outputs/events/description values knows only two options, we have
P (f2) = 1−P (f1). In this case we see that entropy approaches zero if one event
is predominant. The entropy is maximal if both events appear with equal fre-
quency. This behavior generalizes for n events, i.e. information entropy is always
maximal if all possible events occur with the same frequency. This immediately
explains why the entropy formula is tailor-made for media understanding, in par-
ticular, the analysis of media descriptions. Above, we mentioned several times
that the ideal description element will – over a well-balanced ground truth –
have uniform distribution. Information entropy measures exactly this property.

Information entropy assumes a mixture of ergodic sources as input. That
is, all sources that create the mixed output have the same statistical properties.

1We stick to our nomenclature, even though h is the more common notation for information
entropy.
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The ergodic requirement establishes the link from information theory to dynamic
systems, which can nicely be defined topologically as ergodic systems. Please
refer to Chapter 27 for details on this issue. As mentioned above, we assume
the source of the input to be a Markov process. In the case of e(f) this Markov
process is of zero order. That is, the appearance of one event fi does not depend
on any of its predecessors, practically aaabbb = ababab. If such a Markov process
is not sufficient to describe the production system properly (e.g. if some concept
of neighborhood exists), we require a process of higher order. A Markov process
of first order (one predecessor) can be evaluated by conditional entropy as follows.

e(f) = −
∑
j

∑
i

P (fij) log(P (fij)) (20.10)

Hence, the dependency of the transducer on the past is expressed in condi-
tional probabilities: P (fij) = P (fj |fi), if we assume a temporal context of the
indices i, j. Higher-order Markov processes can be defined in likewise fashion.

We see, theoretically, information entropy could describe the underlying char-
acteristics expressed in some data precisely. It would only require the definition
of a sufficiently high-dimensional Markov process. Practically however, this is
in most instances not done. Investigators rather rely on the aura of the entropy
formula and apply information entropy based on a zero-dimensional Markov
process. This is straightforward but wrong. Though the optimization criterion
is preserved, the structure of the underlying data is ignored. Hence, entropy
measurement is reduced to the evaluation of a histogram of isolated events.

Shannon defines a number of measures based on information entropy. Rela-
tive entropy sets the actual entropy in relation to the theoretical maximum.

Relative Entropy =
e(f)
emax

(20.11)

Redundancy = 1− Relative Entropy (20.12)
Information Gain = e(fj)− e(fj |fi = x) (20.13)

Negentropy = emax − e(f) (20.14)

As mentioned above, the theoretical maximum of entropy for some descrip-
tion element f is the uniform distribution of all possible (quantized) values.
Then, redundancy defines how far an actual transducer (e.g. a feature trans-
formation) is from the theoretical maximum. For our example, if the actually
created distribution of description elements is Gaussian, then we have a high
redundancy, which is equivalent to the existence of neighborhood in the space
of events.

The information gain measures the value of knowing fi = x in a conditional
process by computing the contrast of the entropy over all events and the entropy
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for the known event. Eventually, negentropy measures the free entropy, as Gibbs
called it. The result is similar to redundancy but without normalization to a
pre-defined range of values. Negentropy – a fashionable term in media theory,
as we will see in Chapter 22 – measures the potential for improvement in the
transducer. The original definition for physical applications by Schrödinger set
emax as the entropy of the Gaussian unit distribution, because this is the one
with the highest entropy among the unit distributions. Hence, this form of
negentropy measures how far a natural process is from maximal diversity.

These measures bridge the gap to the concept of interestingness measures
as, for example, defined in [115]. An interestingness measure summarizes the
diversity in a sequence of events.2 The individual events are created by some
process, a transducer that may, for example, be a feature transformation. In
this case, the events are description values of media objects. The formulation of
the interestingness measure determines its focus of attention. As we saw, infor-
mation entropy judges uniform distribution of all possible events as interesting.
Statistical variance is maximal for strong outliers. Some other relevant measures
are listed and discussed below. See Table 11 in [115] for a comprehensive list of
measures.

Bray Measure =
∑

min(fi, q) (20.15)

Gini Coefficient =
q

2

∑
j

∑
i

|fj − fi| (20.16)

Kullback-Leibler Divergence =−
∑

fi log
fi
q

(20.17)

Simpson Measure =
∑

f2
i (20.18)

Simpson’s measure is a form of energy value. Squaring the input values
fi reduces small values and increases large ones. Hence, for Simpson positive
outliers are interesting. The Gini coefficient (for example, used by the United
Nations to compare the state of development of countries) measures the total
difference of two sets of events. The bigger the differences the higher the coeffi-
cient. Factor q is a normalizing factor (e.g. a norm in form of a query object).
Bray’s measure computes the sum of events where a minimum is given in form
of a norm q. Hence, it is mostly interested in large values fi. Eventually, the
Kullback Leibler divergence (KLD, Q16 in the appendix) is a measure related
to information entropy. It relates individual events to some norm and applies
weighting afterwards. Hence, a sequence of events will be the more interesting

2Sometimes, in particular for text and bioinformation, the term informativeness measure
is used as a synonym.
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the more different it is from the norm. The divergence measures Q10, Q17-Q19
in Appendix B.1 can be used in the same way as the KLD.

The KLD brings us to the problem of practical application of information
entropy and other interestingness measures. Firstly, the inputs fi in KLD and
the other measures have – in the context of media understanding – to be un-
derstood as probabilities P (fi). Hence, we have to aggregate the likelihood of
occurrence of some event fi over a given sample. But this is usually not suffi-
cient. Media understanding relies mostly on quantities (e.g. quantitative color
descriptions). Should we consider every two values of some description element
fi as individual events? That will hardly make sense. The practical approach
is to quantize ranges of values into events prior to probabilistic aggregation. In
simple words, compute a normalized histogram of the data before evaluation.

Noise

Signal + Noise

SNR

Figure 20.5: Signal-Noise Ratio Example.

Before we conclude, we would like to turn the attention once more to the
signal-noise ratio (SNR), which is another fundamental quality criterion in me-
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dia understanding that may be interpreted as an interestingness measure. The
following equation gives two alternative definitions.

SNR =
Signal
Noise

=
µ

σ
(20.19)

Figure 20.5 illustrates a typical application for the first form. Known signal
information (a sine wave, not given in the figure) is overlaid with noise. The
resulting signal can be evaluated by SNR. The bottom graph in the figure shows
that the SNR is maximal where the influence of the noise is low and vice versa.

The second SNR formulation is also an appealing interestingness measure.
It normalizes the mean over the standard deviation. Since the mean is sensitive
to magnitude and outliers (i.e. large values are interesting) and the standard
deviation serves as doubt in the reliability of the data (i.e. a belief score), the
result is a measure that should lie somewhere in-between statistical variance and
information entropy.

We conclude that the triplet entropy, SNR and statistical variance provides
an interesting systematic overview over any data set. Of course, the measures
are partially conflicting, i.e. they cannot all be maximal simultaneously. This is
equally true for the other interestingness measures. The crux is to define the role
of some data set and to derive the interestingness measures accordingly. In the
last section of the chapter, we do this for media understanding feature spaces.

20.4 Evaluation of Good Feature Transforms

This section focusses on descriptions. Evaluation is the central topic but we also
put together some threads that were started earlier in the second part of this
book. The goal is to define what an interesting feature space (the aggregation of
descriptions) should look like, how this interestingness could be measured and –
based on the measurement – be optimized.

Class Size

Interclass Gap

Figure 20.6: Properties of Good Descriptions.
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The properties of good feature transformations were already discussed in the
second section of Chapter 11. Based on the resulting feature space and some
ground truth, we identified two paramount properties that are illustrated in
Figure 20.6. One x stands for one description, i.e. media object, while one
ellipse stands for one class, i.e. ground truth group. The members of one group
should be as close to each other as possible. We called that stability in Chapter
11. Groups, e.g. represented by their means, should be as far from each other as
possible. We called that the discrimination ability. Ideally, groups should not
overlap and the variance of group members should approach zero. However, as
we saw in the information filtering chapters this is hardly ever the case. In the
ideal case, a simple decision rule would be sufficient to categorize the data. In
fact, a quantization function would also do.

In Chapter 18 we already encountered an approach to transform arbitrary
feature spaces in a better form: kernel functions. The purpose of a kernel
function is to introduce space between the members of different ground truth
groups. Then, so the reasoning, a simple classifier (for example, a hyperplane in
the case of the support vector machine) is sufficient to categorize the description
data. Unfortunately, most state-of-the-art kernel functions are rather inflexible.
They neglect the stability criterion and apply the same transformation on all
samples in order to improve the discrimination ability. A more flexible approach
would be desirable.

In this section, we develop this approach. In order to optimize both dis-
crimination and stability we require an interestingness measure that takes both
properties into account. We start our search at the linear discriminant analysis
criterion (LDA) introduced in Chapter 18. This measure has to be optimized
in an iterative process. Our process is based on canonical correlation analysis,
since this approach uses an advanced form of LDA. Eventually, we refactor the
entire approach and come up with a novel solution for feature space evaluation
and optimization.

Before we start, however, one question needs to be answered. How can it
be that there is still undesired variance (e.g. in form of a lack of stability) in
the descriptions after information filtering? The answer is, of course, that the
information filters presented so far are all systematic methods, i.e. they do not
take world information into account. The paramount difference of the problem
discussed here is that a good feature transformation is one that represents the
ground truth by stability and discrimination to an extent that categorization
can be reduced to simple mapping from class means to semantic names.

We already came across a measure that takes both stability and discrimina-
tion ability into account. In Chapter 18 we wrote Fisher’s LDA SNR measure
for a feature space with two ground truth groups as follows.
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SNRLDA =
m(µ1, µ2)∑
i,jm(µi, fij)

→ max (20.20)

Here, µi is the mean vector of one ground truth group i over all members.
The numerator is a measure of discrimination, since the coefficient is maximal
if the distance m between the two means is maximal. The denominator, on the
other hand, is sensitive for the stability criterion. The sum of distances from
the means to the individual group members fij needs to be minimal in order to
meet the global maximization goal.

The LDA is an interesting starting point for our algorithm. However, it has
two serious shortcomings: Firstly, it is limited to the case of just two ground
truth groups. Secondly, it is only an SNR measure that does not provide a sug-
gestion for improvement of the evaluated descriptions. The Canonical Correla-
tion Analysis (CCA) overcomes at least the second shortcoming. CCA defines
the following evaluation measure and optimization criterion.

SNRCCA =
xχijy√

xχiix.yχjjy
→ max

x,y
(20.21)

Here, χij is the covariance of description vectors fi, fj , hence, χii is the vari-
ance of one description vector. The variables x, y are weight vectors that need to
be set in a way that optimizes the criterion. Please note that, inverse to LDA, the
numerator measures the absence of discrimination ability while the denominator
measures the absence of stability. This behavior is due to the substitution of
the distance measure by the covariance/variance. The optimization of the CCA
is usually performed under the constraint that the weighted variances have unit
size, i.e.

xχiix = yχjjy = 1 (20.22)

The solution of CCA optimization is obtained by incorporation of the con-
straints in the goal function by Lagrange multipliers, algebraic simplification,
computation of the Eigenvectors and Eigenvalues and usage of these to set x, y.
The Lagrange approach and Eigenvalue decomposition fit together naturally for
this type of problem. Consider the following signatures.

Ax = λx (20.23)
df(x)
dx

− λdg(x)
dx

= 0 (20.24)

⇒ df(x)
dx

= λ
dg(x)
dx

(20.25)
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The first line is the Eigenvector problem for a matrix A, Eigenvalue λ and
Eigenvector x. The second/third line is the Lagrange approach for a goal func-
tion f , Lagrange multiplier λ and constraint g(the optimum lies where the first
derivate is zero). The signatures are under certain conditions equivalent. The
functions f, g given appropriately, the Lagrange multipliers can be obtained by
Eigenvalue decomposition.

CCA does not provide a solution for more than a pair of description vectors.
Hence, the algorithm has to be computed for each pair of vectors in feature
space, which requires a form of merging (alignment, smoothing) of the individual
solutions. It makes sense to embed CCA computation in an iterative dynamic
process that uses the input of one iteration for refinement in the next iteration.
One such transducer would be the expectation maximization approach.

Practical implementation and evaluation of this approach showed the au-
thor that the results are suboptimal. It turned out that the CCA optimization
criterion is not strict enough for the purpose of evaluation of feature transfor-
mations. Hence, we developed a stricter procedure that performs the following
preparatory steps.

1. For each ground truth group, compute the mean vector µi and the standard
deviation over all members σi.

2. Sort the groups in ascending order by their distance to the origin of the
coordinate system.

3. Use the vector with maximal distance to normalize all mean vectors. After
this step, the most distant vector has distance 1.

4. Define a scale from the origin of the coordinate system to the mean with
the largest distance and define points along this scale with constant step
width. The number of points has to match the number of ground truth
groups.

The result of the process is – for one-dimensional descriptions – illustrated
in Figure 20.7. If we have just two ground truth groups (bottom), two points
are defined along the scale (denoted by x). With increasing number of classes
the reference points get distributed linearly over the space. Now, this scale is
used as follows to measure stability and discrimination.

md = 1−
∑
|µ̄i − ri|
n

→ 1 (20.26)

ms = 1−
∑
σi
n
→ 1 (20.27)
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Measure md measures discrimination, where µ̄i is the i-th group mean after
sorting and ri is the i-th entry on the measurement scale. The black horizontal
line segments in the figure illustrate the individual associations. Measure ms

expresses the average distance of the mean vectors from uniform distribution.
Taking the inverse shifts the optimum to unit size.

Number of Classes

Description Scale

Figure 20.7: Measure for Good Feature Transformations.

Like in LDA/CCA, md measures stability as inverse variance. Since we are
interested in well-balanced optimization, we use the F1 score to merge the two
optimization criteria.

SNRds =
2mdms

md +ms
→ 1 (20.28)

Practical evaluation of this measure showed its superiority over the LDA/CCA
approach. The used discrimination measure is significantly stricter than just dis-
tance/covariance and the F1 score guarantees balanced optimization. However,
the measure does not yet suggest an optimization algorithm. We found the
following GA-like approach well-performing.

1. Compute SNRds for each description element of feature space.

2. Select the n best description elements for refinement and eliminate the rest
from feature space.

3. Compute new description elements by pairwise division, multiplication,
subtraction and summarization of feature space members.

4. Add the computed description elements to feature space and return to the
first step.

This process is iterated until a predefined level of SNRds is reached. Experi-
ments showed that this process increases the data quality in terms of SNRds by
up to 30% which causes a significant increase in categorization performance of
the corresponding media understanding algorithm.
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Please observe two points. Firstly, this algorithm may be interpreted as a
form of feature selection (see Chapter 20). Secondly, the suggested algorithm is
in fact a kernel function. Ideally, it reaches the desired goal and reduces catego-
rization to a labeling problem by eliminating overlaps in feature space between
ground truth groups. The major disadvantage of the approach is its complexity.
The improvement process for description elements takes far too long in order to
be computed on the fly. One solution to this problem is to identify a successful
recombination pattern during classifier training (third step of the algorithm) and
to apply this kernel function statically during online categorization. The results
are worth the effort.

In conclusion of this chapter and the second part of this book, we have in-
troduced a number of high-performance algorithms for feature transformation,
information filtering and categorization. Where possible, we endeavored to iden-
tify parallels between methods used in different areas. In the next chapter, we
reflect these patterns, draw conclusions from the first part and sketch the objec-
tives of the third part.
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Chapter 21

Reflection of
Professional Methods

Lists the major findings of the second part, names major potentials of the pro-
fessional methods, develops a set of categorization building blocks, sketches best
combinations of media understanding methods and provides an overview over the
third part.

21.1 Conclusions from Advanced Methods

This chapter serves the same purpose as Chapter 11: Transgression from one
layer of understanding to the next. We summarize the major findings of the
second part in the first section. Then, we do for categorization what we did for
feature transformation before: We distill the major building blocks common to
the discussed classifiers. We have seen that the world of categorization is popu-
lated by quite diverse creatures. Standardizing these is a non-trivial task though
worth the effort, since it provides valuable insights on the general possibilities
of categorization as well as on potentially interesting new combinations of suc-
cessful components. In Section 21.3, we take what we have learnt about the big
picture of media understanding and about the toolbox of feature transforma-
tions and categorization algorithms. With this input, we discuss combinations
of methods that have proven successful in practice. In the last section, we pro-
vide an overview over the last part of this textbook, in which we move towards
the frontiers of active research in the various disciplines united under the media
understanding umbrella. In short, in this chapter we reflect the second part and
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derive conclusions as input for the third.
As the first section of Chapter 11, this one is organized along the big picture.

First, we summarize the essential points about professional feature extraction
methods and information filtering methods. Then, we emphasize the major find-
ings about categorization and evaluation. Eventually, we point out the – from
our perspective – major shortcomings of the state-of-the-art media understand-
ing methods and discuss starting points for improvement.

In the area of feature transformation and general information filtering we see
five paramount aspects of professional media understanding methods.

1. Template matching based on discrete transforms is currently one of the
most effective approaches to improve the semantic level of descriptions.
The set of discrete transforms ranges from the straightforward Fourier
transform – which is still state-of-the-art in the audio domain – to multi-
dimensional wavelets. The transformation step provides a global convo-
lution operation that is most successful where the content matches the
template provided by the transform perfectly. Basing template matching
on the spectral representation allows for pushing the semantic level even
further up. Here, the template can be any form of representation of con-
text, as we defined it in Chapter 11. It is one challenge of future media
understanding research to identify those types of context that influence
human perception and similarity judgment profoundly. Since this topic
is of eminent importance, two chapters of the third part deal with it. In
Chapter 24 we deal with the problem of semantic template matching in
general and in Chapter 25 we discuss current best practices.

2. The identification of local interest points based on the characteristics of
their gradients and the usage of sets of these interest points to describe
objects is a second major approach that improves the semantic level of
descriptions significantly. The idea is motivated by insights in human
perception dating back to the 1950ies. The state-of-the-art approach in-
cludes the computation of a scale space before interest point detection
and neighborhood-based description afterwards. In particular, the second
idea leads to expressive local descriptions. As we will see below, there is
some potential in the actual selection of interest points. We saw that the
currently used approaches are generally similar and mostly perform selec-
tion based on high curvature. Visual investigation, however, shows that
the interest points selected by these algorithms do not preserve the visual
characteristics to a satisfactory degree. Still, the general approach has
the highest potential to be the foundation of a future human-like object
representation method for media understanding.

3. In the 1990ies, some leading researchers considered the transformation-
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based approach of description by wavelet-based multi-resolution analysis
as the ideal description of media objects. This form of transformation
should include all relevant information, if the mother wavelet fits both the
characteristics of the media (e.g. edge information in images) and the char-
acteristics of the desired information (e.g. human faces). Unfortunately, as
we discuss below, twenty years later still very simple mother wavelets are
mostly used for transformation. On the other hand, the local feature ex-
traction approach in combination with scale spaces provides a very similar
result to wavelet-based multi-resolution analysis. We discussed this issue
in Chapter 14. It is, therefore, thinkable that the future will see further
convergence of these fundamental approaches and mutual fertilization.

4. In the domain of description of temporal change, we have seen that opti-
cal flow, the method of choice, is the basis of most semantic descriptions.
Independent of the size of the media sample for which the flow vectors
are computed (one pixel, macroblocks, objects or even an entire frame),
the general algorithm includes neighborhood search (a form of autocorre-
lation) and smoothing. The neighborhood search part is very similar to
other methods of gradient computation. The major difference to the local
methods discussed in the second part of the book and the texture descrip-
tions discussed in the first one is that here, the gradient is computed over
time. Hence, the individual flow vector is a measure of movement, and
the aggregation a measure of motion activity. Depending on the context,
this activity can be interpreted in several forms, for example, as camera
motion or the movement of complex objects.

5. Eventually, the hidden message of the information filtering methods intro-
duced in the second part is that descriptions – no matter how intelligently
extracted – are not sacred. Advanced filtering methods help to reduce the
level of redundancy, make the descriptions more efficient (i.e. they express
more information with less numbers) and to smooth out noise. In partic-
ular, the latter point provides a link back to the last conclusion, where
smoothing is the essential step in aligning neighboring flow vectors. For
example, the Lucas Kanade approach adopts regression for this purpose.
It is a general property of media understanding approaches that smooth-
ing methods are used to fit the sample data to similar smooth functions.
The advantage of increased efficiency is, however, paid with the potential
loss of noise-like characteristics that are relevant for human perception.
Humans are not machines. Despite all our efforts to create conflict-free
mental models of our concepts, our experience and cognition are often not
smooth. Media understanding has to endeavor to imitate human cogni-
tion in order to be successful. In the third part, we will discuss this issue
intensively in several chapters.
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In the area of categorization and the evaluation of training and application
processes, we would like to stress the following major aspects of the methods
discussed in the second part of the book.

1. Human learning and machine learning are highly related – beyond the
names given to machine learning methods. The discussion of concept the-
ories showed us that philosophical reasoning has come up with the same
two fundamental approaches as machine learning. The classic one is based
on constraints, we call such methods separators. The other is based on ex-
amples (prototypes), we call such methods hedgers. Furthermore, we have
seen that some methods are somewhere between hedging and separation,
for example if the separating micro process is used in a learning macro
process that transforms it into hedging. The existence of such methods
points in the same direction as the most recent developments of concept
theory: Most concepts may be mental theories under lifelong development.
That is, an initial hedger or separator is enhanced by exceptions and lim-
itations which makes it less smooth than it was before. What we know as
maturing by experience can be seen as an inverse process to the smoothing
by information filtering advocated in the last point. Maybe the future of
media understanding lies in giving up model rigidity for better adaptation
to human behavior.

2. The structural risk minimization principle makes the fundamental goal of
rigid machine learning (in the sense of the last point) explicit. Categoriza-
tion knows two goals: the minimization of the number of misclassifications
and the minimization of the computational effort (time, resources). The
first goal has been considered most important in the past. Loss functions
have been defined for the three major categorization problems: classifi-
cation, regression, density estimation. It was natural to search for the
algorithm that performs these operations best and to neglect performance
considerations as long as no satisfactory solution has been identified. How-
ever, machine learning has advanced to a state where almost arbitrary
patterns can be learnt. Hence, the minimization of complexity becomes
relevant for two reasons. Firstly, performance is a practically important
issue. Secondly, the simplification of the categorization model helps to
minimize the danger of overfitting, which is – in the absence of generally
accepted ground truth for most categories (Plato’s problem!) – a prac-
tically highly relevant issue. Perfect representation of a training set is
unsatisfactory if the set is unsatisfactory.

3. Simple models help avoiding overfitting but increase the chance of a loss.
The congenial partner of structural risk minimization that helps overcom-
ing this catch-22 is adapting the descriptions to the needs of the simple
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categorization function. Kernel functions are the methods that provide
this functionality. In the second part, we saw that kernel functions have
been defined for almost all types of media data. Their success lies in
two strategies: blowing up the dimensionality of feature space while keep-
ing its population constant, and template-like reorganization of feature
space. Hence, the approach links back both to information filtering and
template-based matching. The major disadvantage of the kernel meth-
ods of today is that they are mostly static. That is, the same few kernel
functions are applied on all kinds of data. In the next list, we discuss a
method with higher potential. Still, the big merit of kernel-based meth-
ods is their amalgamation of feature extraction, information filtering and
categorization methods. A perfect kernel would reduce the latter problem
to straightforward labeling.

4. Psychological findings suggest the representation of concepts by norms,
i.e. mixtures of density functions that represent human experience. Such
a norm would be a suitable implementation of the theory theory mentioned
above (concepts are work in progress). In machine learning, several meth-
ods exist for the creation, refinement and application of mixtures. We
have seen that, for example, the Gaussian mixture model is a simple yet
effective classifier that can as well be used for the definition of the con-
fusion matrices of Bayesian methods. The important point here is that
this approach fits human cognition well, which is after all the yardstick
of all media understanding efforts. Furthermore, this approach as well as
the conceptually similar boosting methods provide a link to the theory of
dynamic systems which will be discussed in the third part of the book.

5. The evaluation process can be simplified significantly by the introduction
of standardized procedures and measures. For this purpose, we introduced
cross validation and the receiver operating characteristic curve. Combin-
ing these two methods reduces ground truth-based evaluation to a visual
control mechanism. Furthermore, standardization helps the exchange of
results. It is, therefore, highly recommendable to employ these two meth-
ods for the evaluation of media understanding schemes.

We would like to close this section by illuminating five major shortcomings
of the methods employed today. The selection is subjective, of course. We
consider the listed issues interesting holes in the theory that represent potentials
for future development.

1. So far, hardly any n-dimensional semantic wavelet mother functions have
been defined. Above, we named faces as one example. Figure 21.1 illus-
trates schematically what a wavelet bank of faces could look like. The
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advantage is obvious. Convoluting a media source over a bank of seman-
tically relevant objects leads to a multi-dimensional representation that
is also semantically relevant. The disadvantage, on the other hand, is
also easy to see. The number of dimensions that a semantically relevant
wavelet bank would have to have is significantly larger than in the one-
dimensional standard case. There, we have just location and scale. A face
wavelet base would require aspect ratio, expressions, presence/absence of
hair, etc. In short, improving the semantic gap is bought by worsening the
curse of dimensionality. Still, semantically relevant media understanding
must necessarily follow this path. The dimensionality problem can be re-
duced by carefully investigating those aspects (and correlations of aspects)
of the semantic categories that are really relevant for human cognition.

Figure 21.1: Semantic Face Wavelet Example.

2. Local interest point detectors – though motivated by cognition – do not take
human perception into account (e.g. Gestalt rules). Figure 21.2 shows an
example. The left edge map from the leading example is represented twice
by interest point detectors and once by a human. We see that the Harris
corner detector is hardly able to represent the relevant face information.
The most important face features (e.g. the eyes) are almost completely
lost. The performance of the Laplacian of Gaussian operator (LoG) is
slightly better: Some eye and mouth features are preserved. A human test
person, however, would distribute the same amount of local information
differently over to stimulus. The rightmost image preserves the features
of the original stimulus well but does not produce a longer description
than the LoG approach. This is similarly true for most types of objects
(except simple geometric primitives). We conclude that curvature is an
important selection criterion, but not the only one. Periodic selection of
feature points (as in the Gestalt laws) is important as well. Of paramount
relevance, though, is the preservation of the semantically relevant prop-
erties (eyes, nose, mouth, etc.). Hence, for media understanding more
effort should be invested in the analysis of context/semantics and their
tailor-made representation in feature transformations.



21.1. CONCLUSIONS FROM ADVANCED METHODS 395

Original Harris LoG Human-Like

Figure 21.2: Do Machines Select Interest Points Like Humans? ( c© CNBC )

3. Optical flow should be based on real-world objects. That is, flow computa-
tion should follow the recognition of object contours or of local feature sets.
It would be straightforward to base flow computation and neighborhood
search on selected interest points. The reduction of the number of points
to investigate would even compensate for the additional effort. Figure 21.3
shows a practical example. If the face contour of the anchor person was
extracted before the flow computation, the entire process could be limited
to the features of the face, which would increase the performance, reduce
the amount of noise and, therefore, make smoothing obsolete. The compu-
tation of object-based flow is currently a hot topic in computer vision. We
are positive that the ongoing efforts will improve the semantic relevance of
motion features significantly.

Figure 21.3: Object-Based Optical Flow Example.

4. Psychological knowledge about the nature of human similarity judgment
and generalization is not sufficiently used in the micro process of catego-
rization. The generalization curve is the answer to the general problem
of how long differences appear similar. This knowledge is fundamental
for the correct judgment of category memberships. Human judgment is
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not linear like a k-nearest neighbor classifier. If the distance between two
stimuli is too large, they are considered different no matter how sparsely
populated the space of examples is. Since human similarity judgment is a
highly relevant source of information, the entire Chapter 28 is dedicated
to the discussion of how this knowledge can be employed for machine cat-
egorization.

5. Eventually, above we criticized that general-purpose kernel functions are a
major step forward but not the last word on the subject. We sketched an
advanced approach that optimizes the kernel function based on the given
descriptions and ground truth. Using a simple classifier in combination
with such a learnt kernel is very similar to the boosting approach. The
tunable kernel learning approach introduces a continuum of possible classi-
fiers ranging from boosting to structural risk minimization. The complex-
ity of the categorization problem is shifted from similarity measurement
to model building. We believe that this tailor-made kernel functions are
suitable for the representation of complex concepts/norms.

In conclusion, the complexity of the media understanding problem can be
shifted between different points of the big picture. We can either try to extract
semantically relevant descriptions, or we use the semantic knowledge to build
an intelligent classifier, or we use a simple classifier on simple descriptions and
build a semantic kernel that maps simple descriptions on a semantically enriched
space. In the third section, we investigate successful combinations of these media
understanding methods. Before that, however, we anatomize the categorization
process.

21.2 Building Blocks of Categorization

Understanding the building blocks of a method is necessary in order to under-
stand its functionality. We consider it beneficial to analyze the building blocks
of categorization – as we did for feature transformations –, because the set
of machine learning methods appears highly diverse. Identifying the building
blocks will show that most differences are not as big as they appear. Our ap-
proach takes the following path. First, we organize the set of methods by the
required training data and by the categorization principle. The discussion of the
emerging fundamental types leads to preliminary sets of components which are,
then, unified in a general set of categorization building blocks. This set is made
subject to analysis with respect to the fundamental problems of media under-
standing. Eventually, we compare the building blocks of feature transformation
and those of categorization. Above, we argued that the complexity of the media
understanding process can be shifted between the components. This suggests
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that similarities between the building blocks should exist. The last part of the
section is dedicated to the identification of these similarities.

Required Context Hedgers Separators
None Cluster Analysis, Random Selection

Self-Organizing Map
References K-Means Decision Tree

Vector Space Model,
Ground Truth Gaussian Mixture Model, Artificial Neural Nets,

K-Nearest Neighbor Bayes Nets, LDA,
Support Vector Machine

Table 21.1: A Categorization of Categorization Methods.

Table 21.1 categorizes the already introduced categorization methods accord-
ing to the required training data (none, references, ground truth) and according
to the categorization model (hedgers, separators). Cluster analysis and the self-
organizing map are two typical hedgers that do not require any world informa-
tion. In comparison, random selection is just a dummy for no learning at all. If
no training data is available, reasonable separation is not possible.

If references are available, strong methods are available in both categories.
Vector space model and k-means differ mostly in the application (retrieval vs.
browsing). Decision trees may also be seen as intermediates between hedging
and separation – depending on the number of weak classifiers employed.

The presence of ground truth information enables the usage of even more
powerful learning algorithms. K-nearest neighbor is the typical hedger, while
mixture models may also be seen as intermediates. The Gaussian approach will
certainly try to hedge members of the same class. However, the norms may
become complex enough to interpret them as separation rules. On the other
hand, perceptron-like nets, probabilistic nets and the support vector machine
are rather separators than hedgers. While the classification is undisputed for
the support vector machine, certain neural nets (e.g. radial basis functions, see
Chapter 29) may also be seen as intermediates or even as hedgers.

Before we continue with a detailed analysis of hedgers and separators, we
have to point out that some methods are missing in Table 21.1, in particular,
boosting methods. These form, together with decision trees and random forests,
the group of ensemble methods. These methods appear generally similar to
intermediates, since they have both characteristics of hedgers and separators.
Most ensemble methods employ a multitude of simple separators to construct a
categorization process sufficiently complex to be called a hedger. We consider it
superior to classify boosting as an intermediate rather than a separator.

What are the typical steps performed in a hedger? The most important
step in hedging is certainly similarity measurement from a reference to some
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other object. The classification depends heavily on the measurement process.
The result of measurement, though, is heavily influenced by various forms of
quantization that are used in hedgers (for example, decision rules, thresholds,
neglecting certain description elements). Some hedgers perform a learning pro-
cedure though the majority of the methods is static (e.g. reference adaptation
in the self-organizing map vs. static k-means). Eventually, the categorization
model is usually only of minor importance (e.g. references are chosen randomly
in the self-organizing map).

Separators, on the other hand, invest the largest effort into model estimation
and learning. In order to make the best of the world information, complex cate-
gorization models are constituted and refined/learnt over time. Quantization is
of minor relevance but still used in separators (e.g. thresholds in decision rules).
Similarity measurement, the classic micro process, is of even less importance. If
the model is on a high semantic level, similarity measurement may even become
obsolete. Then, it can be substituted by a quantization function.

World
Information

Stimulus

Quantization

Model
Estimation

Model
Learning/

Refinement

Similarity
Judgment

Class

Figure 21.4: Building Blocks of Categorization.

In summary, as already sketched in Chapter 17 we come up with the four
major building blocks of categorization illustrated in Figure 21.4. Quantization
is every operation that transforms the input data without an attempt to relate it
to other media objects or to aggregate over description space. One example is the
application of decision rules in decision stumps. Model estimation is the process
that builds the categorization model from the (quantized) input data. A typical
example is Gibbs sampling for Bayesian models. The learning process (control
loop, refinement process) controls the training process. Here, a typical example is
the expectation maximization algorithm. Eventually, similarity judgment is the
process that relates two (quantized) descriptions by a form of crosscorrelation.
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The classic example is distance measurement of query and feature space members
in the vector space model.

The four building blocks are formalized as functions in Appendix A.6. We
use estimatei for model estimation, learni for the learning/refinement process,
measurei for similarity measurement, and quanti for quantization.

If we join the list of building blocks with the categorization in Table 21.1
we can derive a number of interesting conclusions. Firstly, hedgers make hardly
any use of the value of ground truth information. Most models are relatively
simple. A notable exception is the Gaussian mixture model – another reason to
regard it rather as an intermediate. The simpler models reduce, of course, the
influence of the (incomplete) ground truth and the danger of overfitting. On
the other hand, the complexity of the categorization process lies in the actual
classification. Separators shift the complexity generally to the training process,
which allows fast application. The complexity of most similarity measurement
procedures increases the gap in execution performance between separators and
hedgers even further.

Property estimate learn measure quant
Efficiency + – – +
Generalization – – + +
Independence – – + +
Performance + + + –
Simplicity – – + +

Table 21.2: Influence of Categorization Building Blocks on Good Categorization.

Now that we have a set of building blocks, it would be interesting to see
how they influence good categorization. A good categorization method is dis-
tinguished by five properties.

1. Performance. Ideally, the loss should be zero and the evaluation score
maximal.

2. Generalization. There should be no tendency towards overfitting nor un-
derfitting.

3. Efficiency. The computational requirements of training and application
should be minimal.

4. Simplicity. The categorization model should be as simple as possible.

5. Independence. As little as possible world knowledge should be required for
the training process.
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Table 21.2 summarizes or findings about the influence of the building blocks
on these requirements. Model estimation should improve efficiency and perfor-
mance – the latter because algorithmic complexity is shifted from application
(more frequent) to training (less frequent). The other requirements will rather
suffer under a complex model. The learning process optimizes performance
which has to be paid by a negative influence on all other factors. Similarity
measurement has a positive influence on all requirements except efficiency, since
similarity functions are usually complex and need to be computed during ap-
plication. Quantization, eventually, has a positive influence on all requirements
except performance, since here we give up preciseness for efficient computation.

Issue estimate learn measure quant
Curse of Dimensionality – – +
Incomplete Ground Truth – – +
Noise and Missing Data – + – +
Performance – – +
Polysemy + + –
Semantic Gap + + + –

Table 21.3: Influence of Categorization Building Blocks on Fundamental Media
Understanding Problems.

What is the influence of the building blocks of categorization on the funda-
mental issues of media understanding? Table 21.3 summarizes the most impor-
tant findings. Quantization has a positive influence on all performance-related
issues. The downside is a negative effect on the handling of polysemy (due
to the tendency to reduce all noise-like components) and on the semantic gap.
Quantized descriptions are likely to be on a semantically lower level. Similarity
measurement buys intelligent handling of context-related issues with relatively
bad performance and sensitivity to the existence of noise. The learning process
helps to reduce the semantic gap but is time- and resource-consuming. There
is a tendency that learning will compensate for missing data and occlusions.
Eventually, model estimation should endeavor to represent the semantics of the
media understanding problem in the categorization model. However, the process
is sensible to missing data and noise, as we discussed in various chapters of the
second part.

We would like to close this section with a brief discussion of similarities
between building blocks for feature transformation and categorization. Such
analogies do exist, as Figure 21.5 shows. Quantization is more or less the same
in both stages of the process. It is true that some quantization methods (e.g.
coarse representation) are rather typical for feature transformation while others
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Figure 21.5: Complete Set of Building Blocks.

(decision rules, thresholds) are typical for categorization. Technically though,
the processes are almost identical. There is, furthermore, a loose relationship
between the localization/aggregation sequence and the estimation/learning pro-
cess. Both processes construct models bottom-up. The major difference is the
feedback loop which is crucial in categorization but does not exist on the feature
transformation side (yet). The similarity is much higher between crosscorre-
lation and similarity measurement. In fact, the two building blocks comprise
almost the same sets of methods, though in the latter we have in addition some
methods from the domain of human similarity judgment. In summary, the sim-
ilarity between the methods is surprisingly high. Categorization may be seen as
a cyclic feature transformation process that ends up in very short descriptions,
the class labels.

Today, there are hardly any large holes in the set of categorization methods.
Ensemble methods and intelligent kernels allow to exchange one method for
the other gradually. The decision over model rigidity, fit to the ground truth,
learning curve, generalization behavior and algorithmic complexity lies almost
completely in the hands of the experimenter. The remaining question now is:
Which classifier for which descriptions? This question is discussed in the next
section.
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21.3 Which Methods When?

So far in this book, we presented methods that are relevant in media under-
standing, analyzed them and compared them against each other. Methods that
operate on the same data type or perform similar operations were grouped to-
gether. In this section, we go one step further and suggest useful (combinations
of) methods for particular data types, description types and classification prob-
lems. The presented list of best practices cannot be exhaustive. Rather, we
sketch a framework for a future more detailed investigation of the subject.

The motivation is straightforward. We have established a process of media
understanding that works for all data types under consideration and we have
built a toolbox of methods for description, filtering, categorization and evalu-
ation. The next logical step is the definition of templates of concrete media
understanding processes. Or presentation follows the big picture, i.e. we deal
with feature transformation first, then filtering, categorization and, eventually,
evaluation.

Media Type Strongest Feature Transformations
Audio Mel-Frequency Coefficients, Perceptual Linear Prediction
Bioinformation Start and Stop Codons
Biosignals Correlogram
Image Scale-Invariant Feature Transform, Color Histogram
Text Bags of Words of N-Grams
Stock Zero Crossings Rate
Video Lucas-Kanade Optical Flow

Table 21.4: Best Descriptions per Media Type.

Some feature transformations are of undisputedly good performance. For ex-
ample, it is advisable for any audio understanding application to include the mel-
frequency cepstral coefficients (MFCC). Local visual information can always be
described well by interest points. Optical flow is a good foundation for any form
of motion description. Table 21.4 provides a list of best feature transformations
per media type. For audio, perceptual linear prediction is a good supplement to
MFCC, because the latter summarizes the signal while the former performs au-
tocorrelation. Bioinformation processing does not really have good descriptions
yet. The named codons are – though highly important – trivial properties of
gene strings. The correlogram is a good basis for all relevant problems of biosig-
nal understanding. For image data, the scale-invariant feature transform is one
local interest point method that produces good results. In addition, a color
histogram can be employed to describe the global image characteristics. Text
can be described well by n-grams of letters and words. In combination with the
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bags of words method (i.e. a histogram), strong descriptions can be computed.
For stock data, we found out in experiments that the zero crossings rate has an
exceptional predictive power. In combination with a simple decision rule, we
could predict the development of thousands of shares over a period of two weeks
correctly in more than 80 per cent of all cases. Eventually, Lucas-Kanade optical
flow is a fair choice for all motion-based descriptions.

For information filtering of descriptions, it is always recommendable to em-
ploy a principal component analysis in combination with normalization and some
feature selection technique. If feature merging is required, it has several advan-
tages to perform early fusion, i.e. fusion before normalization and factor analysis.

Situation Classifiers
General overview required Cluster Analysis, Self-Organizing Map
Given concepts K-Means
Well separable classes Mixture Models, Support Vector Machine
High variance in class size Bayesian Networks, Markov Processes
Many small classes Decision Tree, K-Nearest Neighbor
Hardly separable classes Ensemble Methods, Kernel-Based Methods

Table 21.5: Best Classifiers for Particular Application Scenarios.

Table 21.5 lists a few application scenarios (types of feature spaces) and
suggested categorization methods. For a first overview, cluster analysis and the
self-organizing map are the methods of choice. If the classes are given (e.g. as
references), it is preferable to use the k-means approach as the straightforward
implementation. If the classes are well-separable (only small overlap between
concepts), density-based methods can be used as well as simple regression models
such as the support vector machine with linear kernel function. If the classes
are of significantly different sizes (in terms of media samples), it is advisable to
employ a Bayesian method since these methods are sensitive to the greater belief
expressed by greater clusters. In contrast to a support vector machine, a Markov
process will lay the separation line closer to the smaller clusters thus questioning
their boundaries rather than those of the larger clusters. If feature space consists
of many small clusters, the k-nearest neighbor approach can be employed as
well as a decision tree. Eventually, if the classes are hardly separable, it is
recommended to rely on some ensemble method or to transform feature space
by a non-linear kernel function.

Table 21.6 investigates a detail of the categorization process. It suggests
best similarity measurement micro processes for given types of description data.
Density functions can, of course, be evaluated by probabilistic inference. How-
ever, one alternative would be to employ an interestingness measure such as
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Description Type Micro Process
Density Correlation, Kullback-Leibler Divergence,

Probabilistic Inference
Histogram Minkowski-Distances, Dot Product,

Earth Mover’s Distance, Mahalanobis Distance
Moment Correlation, Thresholding
Predicate Feature Contrast Model, Pattern Difference
Signature Hausdorff Distance, Dynamic Time Warping
Symbol Hamming Distance, Number of Co-Occurrences

Table 21.6: Best Micro Processes for Particular Data Types.

the Kullback-Leibler divergence. If the density is coarse, correlation may also
be an alternative. For histograms, all kinds of distance functions can be em-
ployed. Meta-models such as the earth mover’s distance may also be interesting.
Moments are best evaluated by some thresholding function (e.g. mean) or by
correlation/covariance (e.g. variance). Binary predicates are typically processed
by predicate-based measures. The two given forms are particularly successful
representatives from the list in Appendix B.2. Signatures (e.g. shape outlines,
stock templates) can be evaluated by the Hausdorff distance or one of its equiv-
alents but as well by dynamic warping. For symbols, similar to predicates, any
counting measure can be used. Hamming distance has been successfully used
on text, while the number of co-occurrences (the discrete equivalent of the dot
product) is always a fair choice.

Eventually, if ground truth is available, evaluation can always be based on
cross validation and receiver operating characteristic curves. The F1 score is
also a fair choice. If no world information is available, systematic statistical
evaluation is the method of choice. The listed methods provide a fair ground
for successful media understanding in the named domains. Professional media
understanding is based on these methods.

21.4 Overview Over Scientific Frontiers

The organization of the third part – like the first two – follows the big picture
of media understanding. Figure 21.6 illustrates the position and docking of the
four major topics. We deal with practical issues such as semantic template-
based correlation, dynamic behavior and the optimization of learning. On the
theoretical side, we investigate what is known about human media perception,
processing and comparison.

The two subsequent chapters deal with human perception. In the first, we
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Figure 21.6: Topics of the Third Part (dotted).

collect everything that may help understanding human perception of media in
general. Topics include media theory, semiotics and advanced models from in-
formation theory. The second chapter summarizes today’s knowledge about
psychophysics, i.e. the reception of stimuli by the individual. The already pre-
sented bits about the psychology of hearing and vision are set into context and
embedded in a larger framework.

The next two chapters deal with practical frontiers of media understanding.
In the first, the paramount importance of auto- and crosscorrelation for media
description is emphasized. We develop a framework of currently used methods
and provide an outlook into the future. In the second chapter, we tackle the
semantic barrier. Based on what has already been said about context and se-
mantics, we investigate the state-of-the-art in semantic media understanding.
Application domains include face detection, speech recognition and stylometry.

After a chapter on advanced filtering and quantization methods follow two
theoretical chapters of which the first deals with learning theory (macro pro-
cess) and the second with human similarity judgment (micro process). We will
present the state-of-the-art in the description of learning bounds and the esti-
mation of learning parameters. Then, we introduce the four major models of
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human similarity judgment and discuss, how far these models have already been
implemented in media understanding. The central statement of media under-
standing is that man is the measure. A method, however good, will not be
successful if it does not imitate human behavior. For example, linear regression
is a fair estimation technique. From the human perspective, however, it has to
be considered too perfect for representing human judgment adequately. In the
third part we will introduce the term supersemantic for this deficiency.

Of the last two chapters, the first investigates neural models of media under-
standing. Starting from the perceptron, the state-of-the-art models are explained
and the current frontier – fourth-generation spiking nets – is discussed. Eventu-
ally, the summary over all three parts emphasizes the major findings and points
out the top potentials of media understanding research.



Chapter 22

Media Philosophies

Discusses the relationship of perception and reality, theories of media content and
media usage, the semiotic analysis of arbitrary symbol systems and potentials for
merging of media theory, semiotics and information theory for the benefit of bet-
ter media understanding.

22.1 The Image in Philosophy

This chapter is arguably the softest of the entire book. We deal with the media
itself – before any attempt of feature extraction or categorization. We review the
most important media theories and endeavor to extract conclusions that can be
employed in the scientific process of pushing the frontier of media understanding.
For this purpose, the first section discusses epistemological aspects of objects
and perception. The second section introduces the major media theories (for
example, the Toronto school) and connects them with the technical perspective.
Section 22.3 approaches the phenomenon media from the analytic perspective
and introduces the toolbox of semiotics for the analysis of media instances. The
last section provides the bridge from the world of media philosophies to the world
of media understanding. This bridge is information theory. We link philosophical
concepts to transduction and cognition thus operationalizing major philosophical
findings for usage in engineering.

In this sense, this chapter is typical for the chapters of the third part. We de-
viate from the path of professional media understanding towards other research
areas and collect interesting ideas that have a potential for exploitation in media
understanding. The next chapter is the twin of this one as it investigates the me-
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dia perception problem from the psychological and psychophysical perspective
where, here, we investigate it from the philosophical perspective. The inclusion
of media theory in the media understanding process is in a very early stage. So
far, thoughts about the perception and cognition of media events hardly played a
role in media understanding. Opening this domain for usage is a true extension
of the frontiers of media understanding.

The motivation for this chapter is straightforward. It should be enlightening
for our work if we understand how human beings approach the phenomenon
media. Feature extraction and categorization have to be based on the behavior
of man in order to be successful. Philosophy takes this view and analyzes media,
their perception and their influence from the perspective of the human being.

This section provides the entry point for the subsequent sections. Here, we
gather the major prerequisites for the understanding of media theories, semi-
otics and media cognition. The central topic is epistemology, the theory of
cognition/understanding.

Since all phenomena lie outside of the human brain, every epistemology re-
quires a handle for the representation of the world outside the brain. This handle
is the image. The Oxford Dictionary of English Etymology defines an image as
the artificial representation of an object, likeness, statue; (optical) counterpart;
mental representation. This description points already at the ambiguity of the
image in philosophy and psychology. Philosophical image theory defines three
relationships that can make something an image of some phenomenon.

• Syntactic: The image has the same properties as the phenomenon.

• Semantic: The image appears somehow similar to the phenomenon.

• Pragmatic: There is a relationship of usage between the image and the
phenomenon.

In Section 22.3, we will see that this differentiation is linked to the three
possible relationships of a signifier and a signified. In fact, the relationship of
image and phenomenon is a semiotic relationship. Please note that the syntac-
tical relationship is equivalent to predicate-based similarity measurement while
the semantic relationship can be seen as quantitative similarity measurement
(see Chapter 28). In media theory, syntactical properties are also called digital
indicators and semantic properties are called analogous indicators.

The three principal relationships of image and phenomenon have been un-
derstood for a very long time. Plato already discussed this issue and based, for
example, the analogy of the cave on it. He emphasized the importance of the
syntactic relationship (eidos) and admitted only little relevance to the semantic
relationship: Eikons (icons), to his understanding, are only the shine but not
the heart of a phenomenon.
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Aristotle argued against this view by stating the holistic principle that the
whole is greater than the sum of its parts. Hence, a set of syntactic predicates can
never represent a phenomenon entirely. This view was supported by Pliny who
relates the famous story of Zeuxis and Parrhasius. Both painters were able to
produce photorealistic paintings. The first painted grapes that were so realistic
that birds pecked after them. Parrhasius overtrumped Zeuxis by painting a
curtain so realistic that it made the other want to open it. Two examples of
mimesis (semantic images).

In the 1960ies and 1970ies, Goodman argued for the position of Plato by
pointing out that similarity is neither a necessary nor sufficient condition for a
good image. He declines the importance of the semantic relationship and rather
emphasizes syntactical relationships – which is in line with the psychological
point of view at that time. As we will see in Chapter 28, today, we see the ideal
image as a mixture of syntactic and semantic aspects. The pragmatic aspects
are due to their high semantic level (i.e. dependence on context) always out of
the media understanding discussion.

Modern philosophy saw a renaissance of the image problem in Hume’s epis-
temology. His law of resemblance stresses the importance of the similarity of
past and future. As it cannot be proven, any form of induction/causality (cause
and effect) must simply rely on the existence of this similarity. In the second
part, we came across the story of the rainmaking marbles reported by Barley.
This induction is a nice example for the danger in Hume’s law.

Figure 22.1: Rabbit Duck Illusion.

In the Philosophical Investigations, Wittgenstein investigated the effect of
the reversible figure shown in Figure 22.1. Depending on the viewpoint this
figure may be seen as a rabbit or a duck. The perception may flip over time.
Wittgenstein called this a change of aspect and tried (unsuccessfully) to find its
reason. Obviously, the figure shows a semantic relationship to both the sketch of
a rabbit and a duck. The predominant explanation today is based on semantic
relationships though. Since the figure shares an about equal number of properties
with both animals (position of the beak/ears, eye, etc.), it has an about equal
similarity to the human concepts of both animals (without asking if this concept
is based on conditions or prototypes). Hence, both concepts race in a cognitive
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process for the successful explanation of the phenomenon. Since the distance
between them is small and visual perception is a continuous stream of saccadic
eye movement, oscillation in the form of changes of aspect is the consequence.

What can we conclude from this discussion? Our media are the phenomena.
The image is the human perception of the media. That is, perception is based on
common properties, similarities of appearance and similarities of use/part-whole
relationships. As we will see in the discussion below as well as in Chapter 28,
any theory that wants to understand media has to operationalize these three
relationships. Equipped with these philosophical tools, we advance in the field
of media theories and investigate its most prominent representatives.

22.2 Media Theories

In this section, we provide a rough overview over the major media theories. We
start with a set of goals for media theory. Then, we introduce the major contri-
butions in temporal order. The first media theories were mostly concerned with
aesthetic problems. Only after the second world war followed more technical
theories – possibly inspired by the advances in cybernetics, dynamical systems
and information theory. A major milestone were – and still are – the ideas of
Marshall McLuhan, the major exponent of the Toronto school. Later decades
saw the development of postmodern media theories that went again further away
from the technical standpoint. One type of media has been of especial impor-
tance: language. Hence, in the last part of the section we sketch the major
theories that deal with text, language and writing. Media theories are always
bound to individuals and, therefore, the following discussion goes from one major
exponent to the next.

Medium Channels Dimensions Senses Carrier
Cinema 1:n Space, Time Audiovisual Pixels, Amplitudes
Email 1:1 Time Visual Letters
Web Forum m:n Time Visual Letters
Newspaper 1:n Time Visual Letters, Pixels
Phone 1:1 Time Aural Amplitudes
Photo 1:n Space Visual Pixels
Radio 1:n Time Aural Amplitudes
TV 1:n Space, Time Audiovisual Pixels, Amplitudes
Webpage 1:n Space Visual Letters, Pixels

Table 22.1: Some Media Examples.

Table 22.1 provides a bit of motivation for the existence and increasing pop-
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ularity of media theories. In particular, the twentieth century has seen a mul-
tiplication of media channels, media types and media usages. The listed types
of media are distinguished by the type of information/communication channel,
by the dimensions of their content, the sensual carrier and the physical carrier.
Most modern media are distributed from one source to n destinations, i.e. in-
formation media. Communication media either have a 1:1 structure or an m:n
structure. The latter type has become increasingly important in the digital age.
Simplified we can say that most quantitative media in media understanding to-
day are used in 1:n fashion while communication media are mostly symbolic
media. Interestingly, most media are either temporal or spatial. The spatiotem-
poral combination is seldom – in fact, video is the only type relevant in media
understanding. Of course, the sensual carrier is linked to the physical carrier.

Now, what do we want from a media theory? Very generally, we would like to
understand how human beings perceive media objects, their shape, their content
and their effect. All of these aspects are highly relevant for computational media
understanding, since exactly these aspects have to be imitated by a smart media
understanding application. Systematically, the program of media theories can
be summarized in five questions.

1. How do media come into existence?

2. What is the anatomy of a medium?

3. What is the content of a medium?

4. What effects do media have?

5. How do media develop over time?

The two most interesting questions are certainly the third and the fourth.
However, the first, fourth and fifth are not technical but sociological questions
out of the scope of this work. In the discussion below we focus on the second
and the third question as these are the most interesting for media understanding
applications.

Three early birds in media theory were Walter Benjamin, Fritz Heider and
Max Bense. They were mostly concerned with aesthetic aspects and conse-
quences of – at their time – new media. In the early twentieth century, the
photocopier and radio were major media innovations. Benjamin investigated
the effect of copying on pieces of art. He observed that artworks (auratic works)
loose their aura through technical reproduction – which must not necessarily
be bad, since it introduces Massenkunst, art for the masses on an auratically
lower level but, therefore, wider spread. Media understanding stands firmly on
this development that was accelerated significantly by the introduction of digital
media reproduction by cheap cameras in the 1990ies.
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Max Bense took up the aesthetic thread and investigated whether it is possi-
ble and reasonable to define measures for the aesthetic quality of a media object.
Certainly, the aesthetic quality of the Mona Lisa will be higher than of a pic-
ture in a newspaper. The operationalization of this idea leads to interestingness
measures – as discussed in the second part – and similarity measurement to
category prototypes. Fritz Heider went deeper into this question by asking if
physical properties make something a medium, i.e. create the aura specific for
a particular type of media.

Benjamin also influenced media theorists that investigated the fourth ques-
tion stated above. Hans Magnus Enzensberger concluded from the auratic con-
cept that media manipulate per se. More specifically, Neil Postman argued that
media infantilize. That is, the usage of media makes the human being passive:
the media acts by broadband information while the subject is reduced to a con-
sumer, a data sink. We consider it important to note, that the methods of media
understanding break up this situation by giving the subject a tool in hand that
allows to take control over the consumption process, to search for specific bits
of media content and to consume just this chunk instead of an entire avalanche
of data.

The exponents of the Toronto school: Innis, Havelock, McLuhan and Kerck-
hove, developed media theory to an independent research discipline. Their ideas
are based on the technical development before, during and after the second world
war, the development of cybernetic theory, the formulation of the theory of dy-
namical systems and the invention of information theory. Harold Innis started
the development by working in a similar direction as Max Bense. One of his
key questions was, if media can be described in a formal/mathematical way –
an idea very similar to what we do in media understanding to show that media,
descriptions and categories are actually very similar concepts.

The most prominent member of the Toronto school is probably Marshall
McLuhan. In his two books [260], [261] he expressed views that opened new
dimensions of media theory. The following list collects a few of his famous ideas.

• The medium is the message.

• Technology changes the dimensions of space and time.

• The content of a medium is another medium.

• There is a distinction between hot and cold media.

• Hot media require little participation.

• The electrical network is a model of the central nervous system.

Not much needs to be said about the first statement. It emphasizes that the
effect of a media object is not just determined by its content but also by its
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anatomy, the setting and the norms of the receiver. The second statement sup-
ports what was already observed by Benjamin and others. For example, modern
digital media have an accelerating effect on every day life. The third statement
is very interesting for us as it supports the view that media understanding is a
cyclic process. The low-level properties generate a new meaning on a seman-
tically higher level, quantities are transformed into symbols/predicates and set
into the context of the human operator.

Figure 22.2: Hot (left) and Cold (right) Media Example ( c© CNBC ).

The fourth statement is of particular interest for media understanding. McLu-
han distinguishes media that are rich in details and poor in details. Figure 22.2
shows two examples. The left image from the leading example, a modern news-
cast, is a hot medium. While the anchor person presents the news, multiple
lines of scrolling text inform the viewer about international events and the de-
velopment at the stock exchange. In contrast, the right image is reduced to the
anchor person. In the 1960ies, a newscast could have looked like that. Rich
and poor in details is a very interesting categorization for media understand-
ing. If a medium is hot, we are able to extract a multitude of descriptions, we
have polysemy, different semantic meanings and there is a potential for semantic
improvement by iterative media understanding. Cold media do not have this
potential. Interestingly, McLuhan named radio a typical hot medium and tele-
vision a cold medium. This judgment shows the development of television over
the decades. Generally, the genesis of new media goes from cold to hot (e.g.
in the development of the Web). Wittgenstein antedated in the Philosophical
Investigations the hot/cold differentiation. He gave the word Freude (German:
joy) as an example for a cold medium and its reversion eduerF as an example
for a hot medium. He concludes that the degree of novelty/surprise is an im-
portant criterion of the content. Hot media provide a constant large amount
of (pseudo-)new information that pushes the receiver into passiveness. Hence
McLuhan’s conclusion that hot media require little participation. In fact, they
allow little participation. Media understanding, as we argued above, is able to
break up the dilemma of hot media (interestingness, passiveness) by destroying
the constant stream and enabling interaction.
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We perceive the last statement in the list of Marshall McLuhan’s ideas as a
symptom for the development of media theory from the late 1960ies until today:
pseudo-technical argumentation. As every engineer knows, the only relevant
similarity of the human brain and the electrical network is the transmission of
electrical signals in a network. Neither the purpose, nor the characteristics, nor
the system of transmission show significant similarities. As Sokal and Bricmont
criticized in [346], postmodern constructivism lead to a misuse of physical and
technical concepts in media theory and related areas. They investigate the works
of Kerckhove, Virilio and others and show that most of the technically motivated
statements do not make sense. Indeed, we could not extract concepts helpful
for media understanding from the works of these authors. For example, Kerck-
hove states a fundamental relationship between alphabet and computer, which
is trivial since the computer is a symbol processor and the alphabet a symbol
system.

Face

III 3 Three

Pictogram Ideogram Syllable

Figure 22.3: Examples for the Development of Writing.

One branch of media theory that deserves particular attention is the analysis
of language and writing. Four outstanding philosophers in this area are Have-
lock, Derrida, Postman and Kittler. Though all four also contributed to other
areas, their insights about writing systems are of highest interest to us. Havelock
argued that there is no writing per se. Instead, only particular writing systems
came into existence that must necessarily show at least some similarities. From
his point of view, the symbol system of writing develops in three stages. Figure
22.3 gives two examples. In the first stage, pictograms are used to represent phe-
nomena. These are then abstracted to ideograms – interestingly, a development
from a hotter medium to a colder medium. Eventually, a syllable or a sequence
of syllables is developed that replaces the ideogram. Depending on the writing
system, the syllable may be depicted as one sign or a sequence of atomic signs.

From the epistemological point of view, the pictogram has a semantic re-
lationship to the phenomenon, the ideogram is syntactically related and the
syllable only in a pragmatic form. As the semantic relationship was criticized
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as the weakest, because it is based on similarity judgment, it is only natural
that a syntactical relationship is sought for replacing it. The motivation for the
transformation of ideograms to syllables may be found in the standardization
and reduction of the symbol system.

Havelock’s ideas have inspired other authors. Derrida stated that the end of
the book culture becomes visible in larger libraries. This argumentation goes in
a similar direction as Benjamin’s, with the book as the artwork and libraries of
increasing size as a form of Massenkunst. Postman thinks into the same direction
as Bense when he endeavors to measure the understandability of a sequence of
symbols. Kittler points out the importance of verses for memorization. Oral cul-
tures use verses for the transfer of information from one generation to the next.
Verses are a form of redundancy. Redundancy helps learning. This supports the
usage of training-based categorization techniques in media understanding as a
human-like approach for better, sustainable understanding of media content.

What can we learn from media theory? Firstly, that there are periodic at-
tempts to normalize media types and to measure their content and effect (aes-
thetics, for example). Concepts and similarity measurement appear to be im-
portant tools in the general understanding of media. Media theorists are still
struggling for commonly accepted terms. McLuhan and others invented terms
for some aspects of media before unnamed. However, the number of tools is
still very small. Maybe, media understanding can contribute to media theory by
providing technical insights that are valid for many types of media content. The
last section of this chapter goes into this direction. In the next section, though,
we introduce a small yet effective set of tools for the content-based analysis of
arbitrary media objects.

22.3 Semiotics

Régis Debray, the father of mediology, defined medium as a combination of sym-
bols, codes, a carrier and a memory. Carrier and memory provide the technical
basis. Symbols are samples, the basic units of the medium. The code assigns
a meaning to symbols. This section is dedicated to the systematic investigation
of the meaning of symbols: semiotics. We start with introducing the elements
of the semiotic system, define the possible relationships that may exist between
symbols and their meaning, describe a few philosophical alternatives, give exam-
ples and, eventually, investigate a major shortcoming of the semiotic approach
that will be further investigated in the subsequent chapters.

Semiotics is a research discipline with many fathers. We follow the view of
Roland Barthes and Umberto Eco, i.e. we use a similar set of terms in a similar
way. Our motivation is that semiotic analysis is able to investigate arbitrary
media objects and to make their inner structure transparent. Thorough semiotic
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analysis is a complex time-consuming task but, in particular, in the early stages
of a media understanding process worth the effort. Better understanding of the
recurring symbols, their meaning and interaction allows to judge the content
– and, hence, the necessary methodology for analysis – more precisely than if
we were ignorant of the content. A further advantage of the semiotic toolbox
is that it is very small. The few general concepts allow to structure arbitrary
media content in hierarchical fashion.

Subject Signifier Signified

Indexical

Iconic

Symbolic

Smoke Fire

Painting Scene

SOS
Sinking

Ship

Figure 22.4: Semiotic Categories.

Figure 22.4 defines a practically usable semiotic system. In media under-
standing, the subject will be the experimenter or the provider of the ground
truth. The subject perceives signifiers that represent something signified. The
signified is the actual object/meaning. The relationship between signifier and
signified is related to the one of image and phenomenon. Semiotic theory dis-
tinguishes three forms of relationships (codes).

• Indexical : The signifier allows a causal conclusion on the signified. In the
example, the presence of smoke indicates a fire.

• Iconic: The signifier and the signified are somehow similar, for example,
like a classic oil painting and the pained scene.

• Symbolic: The relationship between signifier and signified is arbitrary but
well-defined. A typical example is the international distress signal SOS
which indicates someone in the need for help.

The image theory distinguishes syntactic, semantic and pragmatic relation-
ships between image and phenomenon. Though these two views are very similar,
they are not the same. Not every accepted signifier is an image and – due to
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polysemy, for example, not every image is an appropriate signifier. We see the
similarity of the two types of relationships as follows.

1. An iconic relationship between signifier and signified may indicate a se-
mantic and/or syntactic relationship between image (signifier) and phe-
nomenon (signified). In Chapter 28 we will come across dual process mod-
els (already briefly mentioned in the second part) that implement this idea
and operationalize iconic relationships as combinations of semantic and
syntactic properties.

2. The pragmatic relationship between image and phenomenon may indicate
an indexical and/or symbolic relationship between signifier and signified.
All three types of relationships are causal. The equivalence of pragmatic
and symbolic appears more natural, but indexical cause-effect relationships
also belong to this group.

The practical use of the two terms (signifier, signified) and their three re-
lationships is straightforward. Being conscious of the differences between the
two terms allows us in the first step to recognize objects, for example, in film as
signifiers for some meaning. In the second step, we identify the meaning as the
signified. Eventually, in the third step the relationship between signifier and sig-
nified is chosen as the best fitting from the list of options. Table 22.2 gives a few
examples of signifiers, signifieds and relationships for the media types considered
in this book.

Medium Signifier Signified Relation
Audio Siren Danger Symbolic
Bioinfo Start Codon Begin of Gene Indexical
Biosignal ECG Pattern Healthy Heart Iconic
Image Circle Ball Iconic
Stock Sinking Value Near Crash Indexical
Text (sic!) Last Word Correct Symbolic
Video Face of a Clown Funny Movie Indexical

Table 22.2: Examples for Semiotic Analysis.

The majority of the examples in the table suffer from one major deficiency:
polysemy. In most cases – in particular, if the relationship is not indexical –
two or more meanings could be assigned to a signifier. For example, a siren may
indicate an approaching ambulance car or a change of shifts. The true meaning
depends on the context. Similarly, a circle may stand for the sun, the moon, a
pill, a disk, etc. The face of a clown may indicate a comedy (if it is a nice clown)
as well as a horror movie (if it is a nasty one). The context is decisive.
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The context of a signifier is not always known. If not, we can at least give
probabilities for the most likely meaning and the less likely ones. An established
system here is the distinction in denotation and connotation. The denotation
of a signifier is mostly influenced by direct experience and the cultural imprint.
Within a sign system, denotations are rather stable and well established. Con-
notations may be seen as add-ons that may amplify, weaken or even reverse
the denotation. For correct semiotic analysis it is important to understand that
polysemy exists in signifiers. Hence, where possible the analyzer should make
the exact meaning of the signifier explicit by selecting the appropriate categories
from the denotation and all connotations of the signifier.

The relationships of image and phenomenon and the relationships between
signifier and signified are two ways of looking at the gap between objective reality
and subjective experience. We would like to introduce two more options that
were developed by philosophers. Aristotle defined causality very widely – in
contrast to indexical above – by allowing four possible relationships between the
idea and the reality of something.

• Causa formalis: The idea describes the structure of the reality. Hence,
causa formalis is equivalent to the semantic/iconic relationship.

• Causa finalis: The idea indicates the use of the reality, which makes it
equivalent to the pragmatic/symbolic relationship.

• Causa materialis: The idea describes the building blocks of the reality as
a syntactic/iconic relationship.

• Causa efficiens: The idea indicates the consequences of the reality, i.e. it
is indexical.

Wittgenstein supposed another, simpler system in the form of family resem-
blances. Targeted at the common properties of related stimuli, family resem-
blances are a form of semantic/syntactic (i.e. iconic) relationship. We see them
as a form of similarity measurement by dual process models. See the chapter
on human similarity perception for details on this idea. Wittgenstein did not
consider indexical, symbolic or pragmatic relationships.

Now, what is the use of all these ideas for media understanding? We named
already the benefits of using semantic analysis as an entry point for solving a
media understanding problem. Furthermore, semiotics can be used to analyze
descriptions, class labels and ground truth. Very generally, descriptions and class
labels can be seen as signifiers for media objects and ground truth judgments.
The semiotic analysis of these ingredients of the media understanding process
allows to identify polysemy as one trap and semantic insufficiencies in the data
as another.
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Ball Balloon Airplane
Thematic Taxonomic

Figure 22.5: Thematic Taxonomic Bridge.

We have seen above, that iconic semiotic relationships cover both syntactic
and semantic image relationships. There is a danger in this insufficiently precise
definition. Figure 22.5 gives an example for the problem. Ball and balloon are re-
lated in an iconic fashion, in particular, semantically. Psychologists call this rela-
tionship thematic. Balloon and airplane are also related iconically/syntactically,
which is called taxonomic in psychology. Hence, we have a chain of two iconic
relationships. However, ball and airplane do not have an iconic relationship. At
most, we can think of a symbolic one. This problem is called thematic taxonomic
bridge. It is very important in similarity measurement. Here, it indicates that
despite all efforts the terms used in semiotic analysis are not sufficiently precise
and, therefore, have to be used with caution.

Semiotic analysis has its origin in text understanding. However, the method
is applicable on all types of media. It allows to analyze the content and structure
of arbitrary media objects which makes it a valuable tool for the early stages
of media understanding. In particular, it helps to understand hidden polysemy
in the media content. In the last section of the chapter, we move away from
qualitative analysis and endeavor to formalize the usage of media analysis with
the help of information theory.

22.4 Media and Information

This section is a first attempt to merge the results of media theory and semiotic
analysis with those of information theory. Media theory and semiotics aim at
extracting symbols and their meanings from media objects. Information theory
estimates the interestingness of data streams. The relationship of these two
disciplines is of pragmatic form, i.e. information theory makes use of the results
of the other disciplines. The objects named and described by media theoretic and
semiotic methods can be used as the units/events investigated by information
theory. In this section, we would like to make this idea transparent. We proceed
in the following steps. First, we summarize the types of relationships that may
exist between the perception and the reality of something. Then, we describe
information-theoretic developments in media theory and semiotics. Eventually,
we merge the two areas in a flow model for sign-based media understanding.

In the first three sections, we encountered a number of differentiations be-
tween the perception (image, signifier, cause) and the reality (phenomenon, sig-
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Figure 22.6: Relationships of Perception and Reality.

nified, effect) of some entity/event. Figure 22.6 summarizes and connects the
possible relationships as argued in the preceding sections. Those types that we
consider most relevant for media understanding are printed with full borders,
the others with dotted borders. The figure shows that all approaches except
Wittgenstein’s go beyond similarity-based relationships. However, since those
are the ones that are most relevant for media understanding – eventually, we
want to recognize perceivable pattern similarities – they have to be considered
with special attention in semiotic analysis in media understanding.

Pattern Type Low-Level Examples High-Level Examples
Point Average, Maximum, Peak, Interest Point,

Determinant, Gradient Location, Symbol
Interval Histogram, Deviation, Template, Contour,

Density, Range Phrase, Gene
Group Skew, Regularity, Symmetry, Sentence,

Correlation Self-Similarity

Table 22.3: Some Signifiers in Media Understanding.

Semiotic analysis of media understanding categories means working on a
semantic level that is significantly lower than in the normal case. Table 22.3
provides a list of typical descriptions (signifiers) used in media understanding.
Obviously, the simpler the type of signifier, the higher the potential for mis-
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understanding (polysemy). Hence, the interpretation depends heavily on the
context of the description. More complex aggregates (e.g. groups vs. points)
decrease the risk of misunderstanding. So do high-level signifiers (e.g. interest
points vs. peaks). In consequence, semiotic analysis of such signifiers will be
more successful if the descriptions are of a more complex type on a semantically
higher level. The actual analysis will, of course, analyze the type of relation-
ship between signifier (the description) and signified (the object to capture) and,
most importantly, the degree to which this representation is achieved. In order
to be useful in the world of media understanding, this analysis should be as
formal as possible.

So far for motivation. The development of media theory and of semiotic the-
ory has a branch of (quasi-)information-theoretic investigation/thinking. This
direction is mostly represented by the works of Vilém Flusser. His ideas are in-
fluenced by the developments in cybernetics, dynamical systems and information
theory between the wars and after the second world war. Before we investigate
the ideas of Flusser, we would like to describe the environment briefly.

Input Output
- Compensator Actor

Feedback

Figure 22.7: Feedback Loop.

Cybernetics is based on the feedback system. Figure 22.7 gives an example.
This non-linear system uses the output of the actor to manipulate the input
signal in the compensator. Simple feedback systems are, for example, echo
machines. Norbert Wiener applied the theory of feedback systems on other
scenarios, including the behavior of animals and humans. The development of
the mathematical theory of dynamical systems is closely linked to cybernetics,
since dynamical behavior is often a consequence of a system with a multitude of
(sequences of) feedback channels. The statistic/mathematic treatment of such
systems allows for the description of their overall behavior (e.g. the formulation
of attractors, see Chapter 27). Such ideas were a substantial inspiration for
media theory.

Another inspiration comes from ergodic theory, i.e. the theory of working
systems. In simple words, an ergodic system is one (expressed by a set, an alge-
bra, a flow function over time and a measure) that requires all non-trivial subsets
of the set to change over time. Ergodic theory has been used to describe oscil-
lating systems. This path leads directly to the information theory of Shannon,
who understands the signal-generating source to be an ergodic system.
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On this foundation, media-theoretic considerations were formulated by sev-
eral authors. McLuhan’s distinction of hot and cold media is actually an in-
formation-theoretic idea. It defines a fundamental scale for the interestingness
of media content. Applied to the technical signifiers listed above, we can, for
example, characterize point descriptions as cold. Groups, rhythms, etc. will be
significantly hotter. Descriptions on a semantically higher level are hotter than
elementary descriptions, and so on.

Flusser went further into the information-theoretic direction. Explicitly refer-
ring to the technical definitions, he made, for example, the following statements.

• Information is the emergence of the improbable. Information means to
carve shape into something.

• Low entropy is order, continuity, availability, uncertainty, information.

• There is a negentropy of all life. Only the human is able to invert entropy.

Figure 22.8: Information is Improbable.

The first statement sees information as the result of an ordering process. Fig-
ure 22.8 illustrates this idea. The left image shows gray noise. The right one has
the same entropy on the pixel level but it clearly shows some text information.
The text has been carved into the gray sand. Luhmann expressed the same idea
on the dialectic level when he said that communication is improbable.

The second statement from the list is of central interest for media understand-
ing. Low entropy will certainly mean a high degree of order and information.
The Shannon definition punishes every deviation from uniform distribution of all
elements of the set of symbols. Information is such a deviation. Availability and
continuity can be seen as temporal aspects of this equivalence. However, it is
not clear why uncertainty should match with low entropy. Generally, something
with higher availability and durability should be less uncertain. We believe that
uncertainty here is used as a synonym for improbable, though the meaning is in
this context clearly different.

The last statement expresses the implication of the laws of thermodynamics
that if everything (every process, life) strives for disorder we have not reached
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this point yet and, hence, a certain potential for negentropy must still exist.
The second sentence remains obscure. As we know, negentropy is not inverted
entropy but a contrast from the theoretical maximum to the actual value. Op-
timization of entropy is certainly not a particularly human ability – rather the
opposite. The examples show that Flusser’s idea provide an interesting bridge
from media theory to information theory.

How can we make use of these thoughts for media understanding practice?
As already sketched, we suggest a process with three steps.

1. Semiotic analysis of the media content under consideration with media-
theoretic concepts (hot/cold, information/order, etc.) in mind. Analysis
will include the recognition of signifiers from media events and the defi-
nition of the relationships between signifiers and signifieds. The result of
this step is a list of objects that can be used as units in the second step.

2. Information-theoretic analysis of the media content. This includes the
computation of probabilities of occurrence for semantically relevant signi-
fiers and the computation of (conditional) entropy values as interestingness
measures. The result of this step is sensitivity for the magnitude of the
media understanding problem.

3. Media understanding operationalization of the acquired results. How can
the signifiers be modeled by feature transformations? How can the relation-
ships be modeled by categorization processes? How can the interestingness
values be employed for evaluation? The answers lie in the application of the
introduced media understanding tools with sensibility for the complexity
of the understanding problem.

In conclusion, media theory, semiotic analysis and related areas of research
evolve in a climate substantially different from media understanding. Neverthe-
less, it is worth the effort to identify and use major results of these disciplines for
pushing the frontiers of media understanding. The most important result of this
chapter should be a better understanding of the complexity of media objects and
their content. Semantics and context are expressed on various levels in different
forms. Successful media understanding has to deal with this complexity.





Chapter 23

Perception and
Psychophysics

Lists fundamental aspects of human perception, shows where perceptual and cog-
nitive insufficiencies of the human brain lie, gives an introduction into the psy-
chophysical model and discusses psychophysical aspects of hearing and vision.

23.1 Human Perception and Cognition

In the last chapter, we approached the phenomenon media from the philosoph-
ical direction. Cognitive aspects were not considered. This is the task of this
chapter (and of Chapter 29 – for low-level neural processes). Our motivation is
straightforward. Human perception and cognition are not objective in the sense
of physical processes. We do not lay the same weight on all stimuli. Rather, we
focus on particular aspects of perception, emphasize some stimuli and neglect
others. It is paramount for media understanding to take the peculiarities of
human perception into account. In the first and second part, we already intro-
duced a number of concepts that cannot be ignored in feature extraction and
categorization. In this chapter, we fill the gaps and present a sketch of per-
ception and cognition that should include everything required for professional
media understanding.

As always, the chapter is organized in four sections. The first provides an
overview over perception. The second section deals with particular problems of
perception and cognition. We distinguish three types of errors that are intro-
duced by examples, explained and discussed. Section 23.3 gives a systematic
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introduction into psychophysics, the expression and explanation of psycholog-
ical phenomena of perception by physical laws. The last section specifies and
investigates the psychophysics of the two senses most relevant for media under-
standing: hearing and seeing. Psychoacoustics and the psychology of vision are
two important frontiers of psychophysical research. Many important results of
these disciplines have already found their way into media understanding. We
are positive that further significant advances will be made possible through un-
derstanding this frontier of media understanding better. The present chapter is
dedicated to contribute to this end.

Below, we discuss the fundamentals of the auditory sense, vision and the
other senses – which are due to insufficient hardware, unfortunately, still out
of the scope of media understanding. The purpose of this section is to gather
the relevant bits of information in one place. We do not intend to provide a full
introduction into the anatomy of human senses. Many excellent descriptions can
be found in the literature. In contrast, our focus is on understanding the signal
processing procedures applied in the individual senses.

Visual Cortex
Auditory
Cortex

Gyrus

Motor Cortex

Broca
Region

Figure 23.1: The Human Brain.

Every discussion of human perception requires a basic understanding of the
human brain. For a start, Figure 23.1 sketches its anatomy and names a few
centers of perception. Details on neural processes can be found in Chapter 29.
Generally, the brain is divided into the autonomic nervous system and the so-
matic nervous system. While the first is responsible for the basic management
of life (e.g. the control of the heartbeat), the second includes all perceptive and
cognitive processes. The brain consists of two hemispheres which are connected
by the corpus callosum. The corpus callosum is, for example, very important for
visual perception, as we will see below. Altogether, the brain consists of 1010

neurons which are connected by approximately 1013 synapses and dendrites.
Considering the size of the human brain, the average density is 105 neurons per
cubic centimeter. The average neuron is connected to 3% of its neighbors in a
sphere with a diameter of 1mm.
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Sense Number of Receptor Cells
Aural 3.104

Gustative 8.105

Haptic 2.106

Olfactory 4.107

Visual 2.106

Table 23.1: Receptor Cells per Sense.

Table 23.1 lists the number of receptor cells per sense. Astonishingly, the
arguably most effective sense, hearing, requires the smallest number of cells. In
contrast, the olfactory sense – which is often perceived as ineffective and outdated
– requires by far the largest number of receptor cells. The gustative, haptic and
visual senses lie somewhere between these extremes. We can only speculate
about the reasons for these facts. As we have already seen in the discussion of
the cochlea organ, the auditory sense is very efficiently built. It implements a
procedure very similar to the Fourier transform. The hair cells and tip links are
a simple analog to digital converter that separates critical frequency bands. Such
mechanisms are hard – if not impossible – to implement for the other senses.
The visual scanner, for example, has to aggregate simultaneous stimuli, where
the auditory sense only has to resolve the components of one stimulus. That is,
the low dimensionality of the sensual carrier of auditory stimuli may be seen as
one reason for the low number of receptor cells required.

Little is known of the development of the human brain. It has been observed
that the growth – in terms of the number of neurons – is exponential between
birth and an age of 2.5 years. After this period the growth in neurons decreases
until the age of 12 years. In parallel and after this period, the growth rate of
the number of neural connections remains more or less constant, which indicates
that human learning is a question of neural connections, not of the number of
neurons or age.

The brain is an analog to digital converter that converts stimuli into action
potentials. Loaded neurons show activity for approximately 2ms and a potential
of 50-80mV. The speed of event propagation is delayed to circa ten meters per
second by the neurotransmitters that implement the connections. The weight of
an impulse depends on its distance from the cell center (axon hill) and ranges
between one and five percept of the action potential. The total perceptual load
produced by all receptor cells of all senses sums up to approximately 1GB per
second. Being able to process this avalanche and remaining sane requires our
cognition to throw away the largest part of these data.

We have already discussed various aspects of the auditory sense. In the first
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part of the book, we introduced three fundamental psychoacoustic properties:
the absolute thresholds of hearing, the perceived loudness in contrast to the
sound pressure level (sone curve) and the perceived pitch in contrast to give
sound frequency (mel curve). In the second part, we explained the conversion
of auditory waves into electrical nervous signals by the cochlea organ, and we
introduced the bark scale for the critical bands of hearing.

Ear Flap

Ear Canal
Eardrum

Ossicles
Semicircular Canals

Cochlea

Auditory Nerve

Figure 23.2: Human Hearing System.

These advanced concepts of hearing that are highly relevant for audio com-
pression and audio feature extraction are mostly consequences of the anatomy of
the ear. Figure 23.2 provides a sketch. The ear is usually split into three sections:
outer, middle and inner ear. The outer ear consists of ear flap and ear canal.
Its anatomy acts like a weighting function that emphasizes some frequency com-
ponents while suppressing others. The middle ear consists of eardrum and the
ossicles. It provides the transformation of the auditory air wave into the fluid
wave of the cochlea. The inner ear spans from the cochlea organ to the auditory
nerve and works as described in the second part.

Most relevant aspects of the early stages of hearing have already been dis-
cussed. Hearing is optimal at around 4kHz. The sound pressure level (SPL) is
computed relatively to a reference sound of 1kHz.

SPL = 20. log
psound

preference
(23.1)

The main cognitive processes happen in the auditory cortex. It is well studied
that – maybe because of their efficient representation – large parts of heard
music are stored for recognition in the cortex. Two further regions connected
to the ear are the gyrus and the Broca region. The first, together with the
semicircular canals, is responsible for the human sense of balance. The second
region, in combination with the so-called Wernicke region, is responsible for
speech processing and language understanding. Unfortunately, only little is yet
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known about the details of the audio understanding process implemented in the
human brain.

Like for audio, several aspects of human vision have already been described
in the first two parts of the book. For example, we introduced the three stimuli
theory for color representation and saccadic seeing as a form of scanning. We
explained the different wavelengths on which the three types of cones respond,
their organization in the fovea, various color models including the RGB scheme
that is most similar to the cones and, eventually, the early processing of edges
in the visual system. These facts are enriched in the subsequent paragraphs.

Iris
Lense
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Density
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Figure 23.3: Human Visual System.

Figure 23.3 illustrates the visual system. The muscles of orbit control the ori-
entation of the eye and the size of the lens. The iris is an aperture that controls
the amount of light that reaches the eye background (retina). In the retina, light
beams with wavelengths between 400nm and 720nm are converted into electri-
cal signals in a three layer process. Rods and cones respond to brightness and
particular wavelengths, respectively. Bipolar cells react on the absence/presence
of light. Ganglia cells sum up circular neighborhoods of bipolar cells to on/off
structures. The density of the retina is not uniformly distributed. The right dia-
gram of Figure 23.3 shows that, depending on the angle, the density is maximal
in the fovea (mostly cones) while it is relatively low outside (mostly rods). The
fovea covers only 1% of the retina with 5.104 ganglia cells per square millimeter.
Outside the fovea, the retina has a density of 1000 cells/mm2. There is a blind
spot where the optical nerve exits from the eye.

Stereo vision requires the existence of two signals with spatial disparity. The
signals generated by the two eyes are propagated to the corresponding thalamus
but – through the optic chiasm – also to the opposite one. In the back of the
brain lies the visual cortex where the later stages of vision are located. It is
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interesting to note that a field of optic radiation lies between thalamus and
visual cortex that is influenced by the optical signals.

Limitation

Angle

Figure 23.4: Primary Visual Cortex Pattern Example.

Figure 23.4 illustrate the result of the first three stages of visual perception.
The reaction frequencies of the three types of cones were already discussed in the
first part. The differentiation between red and green cones took place only 35
million year ago (by mutation) which is the reason why the reaction wavelengths
of these types of cones are so close to each other. The signal from the receptor
cells is propagated to two types of bipolar cells. On bipolar cells fire if a light
stimulus is present, off bipolar cells fire otherwise. That is, the latter type of cells
generates a signal where there is no outside stimulus. The input of these bipolar
cells is fed into accumulating ganglia cells that have a structure very similar to
an interest point operator (e.g. the Laplace operator). There are two types of
ganglia cells. On ganglia cells define an on center in a circular off neighborhood
while off ganglia cells implement the inverse pattern. Aggregating these patterns
in later stages allows for the recognition of edges, which are distinguished by their
quantized angle and their length (ends within focus/otherwise). The existence
of this pattern supports the usage of interest points as the first step of object
detection in media understanding.

What comes in later stages of visual perception is hardly known. It has been
found out that particular types of ganglia cells are sensitive to different color
tuples (e.g. red/green, blue/yellow), some cells only fire only if the optical signal
represents a face, hand or another part of the human body. Furthermore, the
output of the ganglia cells is not the only input of the visual cortex. In the
temporal lobe, the optical signal is also processed directly. The results are firing
patterns particular for certain groups of objects and events. However, it has to
be stressed that visual objects are never represented by a single neuron (’grand-
mother neuron’) but always by firing patterns (spike trains, see Chapter 29).

In conclusion, the system of human perception and cognition is complex and
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so far only the earliest stages of processing are well understood. The sensory load
is exceptionally high – even though the human eye, for example, is a sequential
scanner and not a parallel one – as in case of the fly. There is not much to say
about the senses of smell, touch and taste. The majority of touch cells are located
on the lips and the hands. Separate regions are responsible for basic tastes: salty,
sweet, sour, bitter and some particular acids. Unfortunately, we do not have
appropriate sensors for the detection of these dimension of reality by computer
systems. Hence, they are only of minor interest for media understanding.

23.2 Perceptual and Cognitive Errors

Human perception and cognition are complex – and not always right. This
section serves as the transition from the physiological description of perception
and cognition in the last section to the psychological description in the next
section. We point out that three types of errors appear in human perception in
various forms.

• Perceptual-physiological illusions

• Cognitive-perceptual illusions

• Cognitive-statistical illusions

The complexity of these illusions increases from level to level. While most
perceptual-physiological illusions can easily be explained by deficiencies in the
early parts of reception, we have only a limited understanding of cognitive il-
lusions of both types. Below, we introduce several examples for all three types
of perceptive errors. The discussion should make clear that our perception does
not work as precisely as the physiological description of the receptor organs sug-
gests. Some errors can be considered shortcomings of human perception. Others
are rather features of perception. In particular, the third type of error has to
be taken into account in media understanding in order to imitate human per-
ception and judgment correctly. Man is the measure in media understanding.
A supersemantic media understanding application (better than human percep-
tion) will produce as little user satisfaction as a subsemantic one (worse human
perception/cognition). See Chapter 25 for a discussion of these ideas.

The simplest type of perceptual errors can often be explained by the par-
ticularities of the early stages of perception, in particular visual perception.
Figures 23.5 and 23.6 show two well-known visual perceptual-physiological il-
lusions. Watching the Hermann grid without focussing on a particular point
should create the illusion of gray dots in the intersection points of the white
lines. The dots should vanish when focussing on them. Until recently, it was
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Figure 23.5: Hermann Grid Illusion.

commonly accepted that lateral inhibition causes this effect. Lateral inhibition
is a – often, useful – neural function, in which the firing neuron with the high-
est potential inhibits its neighbors, thus enabling the precise localization of the
stimulus. Excitatory and inhibitory ganglion cells implement lateral inhibition.
According to this approach, the gray dot is the result of central inhibition in an
off ganglion cell. However, recent experiments with waved lines suggest that this
cannot be the reason for the Hermann grid illusion. Instead, the explanation is
sought in the visual cortex.

Figure 23.6: Café Wall Illusion.

Figure 23.6 shows the famous café wall illusion. Watching the figure without
focussing should create the impression of non-parallel gray lines. This illusion
can satisfactorily be explained by border locking. Visual perception seems to rely
on object contours for stabilizing the perception of objects in saccadic seeing and
during human motion. Border locking appears to fail, if the contrast between
objects is too low or too high. The gray lines between the black and white tiles
cause both of these problems.

Is it advisable to imitate these illusions in visual media understanding? Prob-
ably, not. Perceptual-physiological illusions do not express relevant aspects of
human perception which is supported by the fact that almost all of them can be
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removed by focussing on the stimulus the causes the illusion.

Figure 23.7: Gray Bar Illusion.

Figures 23.7, 23.8 and 23.9 illustrate several well-known cognitive-perceptual
illusions. The first is the gray bar illusion. The bar in the center appears to
be a brightness gradient while it really is of unicolor. The reason is a cognitive
function that creates color and brightness constancy under varied lighting con-
ditions by compensation. The outer bar suggest the existence of a light source
at the right of the figure. If the gray bar in the center is under these conditions
unicolor than it must really be a gradient with the darkest part closest to the
light source.

Figure 23.8: Depth Illusions: Müller-Lyer (left) and Ponzo Illusion (right).

The two depth illusions in Figure 23.8 are also results of human cognition.
The left Müller-Lyer illusion suggests that of the two horizontal lines the upper
one should be shorter while, in fact, they are of exactly the same length. The
reason for this illusion are the angles that are interpreted by human cognition
as object contours. Hence, we perceive the upper figure as emersed, the lower as
the opposite. If under these conditions the edges are of equal length, the lower
one must in fact be longer since it is further in the back.

Then Ponzo illusion implements the same idea. Of the two gray bars the
upper one should be perceived longer. The reason is depth perception induced
by the rails. The upper bar is closer to the vanishing point, i.e. further to the
back. Since it has equal length in the figure, it must in reality be longer.

Eventually, Figure 23.9 shows a third group of cognitive-perceptual illusions:
illusory figures. The triangle (left) and the square (right) are in fact not there.
Their contour is only suggested by the contours of the displayed objects. The
exact reasons for the perception of illusory figures are yet unknown. We believe,
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Figure 23.9: Illusory Kanizsa Figures.

that the mechanisms responsible for Gestalt perception are also responsible for
illusory figures. Groups of aligned edge segments are here joined to figures –
which is an application of the grouping laws. The existence of illusory figures
supports our argumentation in the second part that interest points should not
only be selected by high curvature but also by Gestalt laws. By that we would
become able to recognize partially hidden objects such as the presented illusory
figures.

We conclude that it makes sense to imitate human perception of cognitive-
perceptual illusions. Depth perception, color contingency and Gestalt laws are
relevant aspects of human dealing with reality. These aspects should be made
part of media understanding systems.

The last group of cognitive errors that need to be discussed here are not
directly connected to perception, rather results of experience and aggregation.
The cognitive-statistical illusions have been identified in psychological research
on human choice behavior, human similarity perception and the development
and application of norms. Interesting works include [182] and [183].

Choice, similarity judgment and related problems are usually based on cogni-
tive references, so-called norms. Norms are mixtures of probabilities like mixture
models. One norm defines one quantitative category, e.g. the typicality of some
item for a class of objects. Humans build norms for all events that are relevant
in their decision space and that appear with a certain frequency. In media un-
derstanding terms, norms are comparable to the categorization model that is
used to conclude from descriptions on semantic categories.

Unfortunately, the development and application of norms is not strictly ratio-
nal. Psychological experiments have revealed surprising insufficiencies in human
decision making and similarity judgment. The problems can be grouped into
three clusters.

• Problems of representativeness

• Problems of availability

• Anchoring problems
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Problems of representativeness are closely connected to similarity measure-
ment, because, usually, the dependence of one stimulus on another (e.g. co-
occurrence) is determined by the representativeness of the latter for the first,
which is operationalized as similarity (e.g. in the human choice model, see
Chapter 17). Problems of representativeness include human insensitivity to a
priories, human belief in predictability, sensitivity to worthless evidence, mis-
conceptions of chance and ignorance against regression towards the mean. These
aspects are explained in the next paragraphs.

Human insensitivity to a priories refers to the fact that we usually do not
take the base probabilities of events into account. For example, in the first part
in Chapter 9 we introduced the HIV test example. Bayes theorem reveals that
even in case of a positive test it is relatively unlikely that the tested person is
HIV positive (in a first world country). The reason is the a priori : It is generally
very unlikely that someone is HIV positive because so few people are. This a
priori is usually not considered by humans.

Human belief in predictability and misconceptions of chance are two related
insufficiencies. Both problems refer to the fact that humans tend to infer conclu-
sions from insufficient data. For example, the belief in a ’law of small numbers’
in analogy to the law of great numbers, is nonsense. In the casino, after a se-
ries of ten times red, it is not at all more likely that black will appear more
frequently in the next rounds. This is a misconception of chance. Human belief
in predictability is to conclude on something from such inappropriate ground.

Furthermore, humans are prone to be influenced in their choice behavior by
worthless information. The fact that a particular sports star advertises a car
is no reason to buy this car. Eventually, regression towards the mean is a well-
studied law of nature that appears in many different contexts. Humans tend to
ignore this law. For example, if both parents are taller than average it is not
likely that their child will be even bigger. It will rather be smaller than the
parents.

The availability problems refer to the norm itself. Is it available and trustwor-
thy? Problems include the so-called judgmental heuristic of validity, sensitivity
to prominent examples and search set complexity. The judgmental heuristic of
validity refers to the problem that humans tend to estimate the likeliness of
some event by the availability of examples. In short, we see what we know: our
paradigms. The sensitivity to prominent examples is closely linked to the typi-
cality problem (concept theories). We tend to consider a famous sports star to be
the typical athlete while, in fact, the typical athlete is rather an average jogger.
Search set complexity describes the problem that we can easily give references
for some norms but hardly for others. For example: How many words do you
know that start with the letter ’r’ and how many that have this letter at the
third position?
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Eventually, anchoring refers to the phenomenon that the results of human
reasoning often depend on the starting point. For example, test subjects gave
significantly different estimates for the number of countries in the United Na-
tions if a first hint was chosen very low or very high. Furthermore, experiments
could show that humans tend to give higher likeliness to joint events. Obvi-
ously, an event that joins two probable events can never be more likely than one
component. However – maybe as a result of the worthless evidence problem –,
humans build such norms.

It is a difficult to answer question whether or not media understanding should
try to imitate human cognitive-statistical illusions? Some aspects are certainly
just errors (e.g. sensitivity to worthless evidence) while others may be seen as
valuable particularities of human reasoning (e.g. the sensitivity to prominent
examples and the anchoring problem in general). Sophisticated similarity mea-
surement techniques already take certain aspects into account. For example, the
insensitivity to a priories is eliminated by the application of Bayesian networks
and Markov processes. We believe that this question is a true frontier of media
understanding, in particular for the abstract statistical data types such as stock
data and bioinformation. The identification of the best mix of intentional errors
and supersemantic behavior is a worthwhile research undertaking.

In summary, several deficiencies exist on the levels of human perception and
cognition. Some of them are worth consideration in media understanding while
others can be ignored/corrected without any loss of authenticity. In the next
section, we go one step further than just describing individual phenomena of
cognition and introduce a general theory of psychological perception.

23.3 Psychophysical Theory

Psychophysics is a research discipline that developed out of physical research (in
particular, optics) in the early nineteenth century. The idea was to investigate
human perception of physical stimuli and to describe this perception in as few
and as simple as possible laws. In the preceding sections we investigated the
anatomy of the human reception apparatus and examples for its failure. Psy-
chophysics is there for the structured representation of this knowledge. Below,
we first introduce the psychophysical model, list the major research questions
and explain the major findings: the laws of psychophysics.

Figure 23.10 illustrates the psychophysical model. Some outside stimulation φ
is received and represented by human perception ψ. This process is called outer
psychophysics. Inner psychophysics refers to the cognitive processes applied on
the perceived stimuli: the neuroprocess. The laws of psychophysics refer mostly
to outer psychophysics. Inner psychophysics is today a part of neuroscience.

The fundamental hypothesis of psychophysics is that φ 6= ψ, i.e. we do
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Stimulation φ

Reception ψ Neuroprocess

Outer PP

Inner PP

Figure 23.10: Psychophysical Model.

not perceive reality as it is. The examples given in the last section support
this hypothesis. However, psychophysical research goes one step further and
formulates laws that answer the following research questions.

1. What are the absolute thresholds of human perception?

2. What are the thresholds of discrimination of human perception?

3. What are the just noticeable differences of human perception?

The third problem is also referred to as scaling. Below the just noticeable
difference (JND) lies a space that is limited by the point of subjective equality.

Absolute thresholds and JND could so far hardly be described by compact
mathematical laws. Instead, they have been documented per sense and for the
full set of search space parameters. We already mentioned the absolute thresh-
olds of hearing that depend on the frequency of the sound. Similar investigations
have been conducted for brightness perception, color perception, the perception
of smell, taste, etc. In media understanding, these data are highly valuable for
the calibration of capturing devices and the preprocessing of media content for
feature transformation.

For the expression of discrimination thresholds, Weber defined the following
law (referred to as the extended Weber law).

∆φ = a1.φ+ a2 (23.2)

That is, the size of the stimulus determines the size of the difference required
for recognizing the change. The bigger the stimulus, the higher the required
discrimination threshold. The parameters a1, a2 are constants for a particular
sense and application. The Weber law works astonishingly well for as different
applications as audio perception and the perception of sweetness.

The Weber law does not yet provide a transformation from the outside world
to the perceived world. The Fechner law defined this transition for the first
time.
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ψ = a1. log φ+ a2 (23.3)

The meaning of the parameters is the same as for the Weber law. The
perception of stimuli is generally claimed to be the logarithm of the physical
stimulus. That is, there is a general absorption of stimulus components in the
reception process. The Fechner law works well for some types of stimuli, but
fails for others. Therefore, the Fechner law has been replaced by Stephen’s power
law.

ψ = a1.φ
a2 (23.4)

The exponent a2 ∈ [0,∞[ is referred to as Stephen’s exponent. Stephen’s
power law allows a vide variety of different behaviors. It includes the inhibitory
Fechner law for a2 < 1, linear/direct transformation for a2 = 1 and excitatory
stimuli for a2 > 1. Stephen’s exponent has been identified for many types of
stimuli. A complete overview can be found in [142] on page 303. Figure 23.11
shows a few interesting examples.

Stimulation

Reception

Electroshock

Muscle Force

Warmth

Coldness
Sweetness

Loudness
Viscosity

Figure 23.11: Examples for Stephen’s Exponent.

The feeling that cold metal creates on the skin has an exponent a2 = 1.
That is, perception ψ scales linearly with physical reality φ. In comparison, the
perception of warm metal has an exponent a2 = 1.6. That is, warm metal creates
a stronger impression than cold metal. Practically, warm things become earlier
unpleasant than cold things. This fact may be explained by higher tolerance
against coldness required from mammals by nature and evolution.

Muscle force and electroshock are two examples for excitatory stimuli. In
both cases a small increase in the stimulus is sufficient to create an over-linear re-
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sponse. Electroshocks almost immediately become unpleasant, weights soon be-
come too heavy – even for the best-trained athlete. We conclude that a Stephen’s
exponent above unit size stands for small tolerance against such stimuli.

On the opposite end of the scale we have the perception of sweetness, loudness
and viscosity. All three stimuli are perceived under-linearly. That means for
sweetness that a small increase is hardly perceived. Larger increases result in
smaller sensations. In order to perceive a linear increase in loudness, the sound
pressure level has to be increased over-linearly. That is, the sone curve is an
application of Stephen’s power law for a2 = 0.67. Viscosity perceived on the
skin has one of the lowest exponents: a2 = 0.42. That is, even a large increase
in viscosity is hardly perceived any more.

Stephen’s power law appears to be a satisfactory solution for the descrip-
tion of discrimination thresholds. Together with tables and charts for absolute
thresholds and just noticeable differences, psychophysics provides valuable in-
formation for media understanding. In particular, feature transformation in au-
dio and visual media understanding benefits significantly from the introduction
of psychophysical knowledge. Some bits are well-established (mel curve, sone
curve, etc.), others are still waiting for discovery. It is one frontier of media un-
derstanding to implement more psychophysical results in retrieval and browsing
systems.

23.4 Psychoacoustics and Psychophysics of Vi-
sion

Since the aural and the visual sense are of particular importance for media un-
derstanding, we dedicate the last section to the accumulation of psychophysical
information about these senses. First, we deal with the auditory sense, then
with the visual sense.

Psychoacoustics is of highest relevance for audio compression, but also for
audio understanding. The fundamental psychoacoustic model includes the curve
of absolute hearing thresholds by frequencies that has already been introduced in
the first part. Other components are the curves for loudness perception (sone),
pitch perception (mel) and critical bands (bark). The latter curve sometimes
also serves as a – heavily quantized – measure for pitch/tonality.

According to [95], the sensory pleasantness of a sound is determined by
loudness, tonality, roughness and sharpness. For the expression of loudness and
tonality the sone and mel curves can be used. For roughness (in asper), the
following model is suggested.
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R = 0.3fm
24∑
i=0

∆L (23.5)

Here, ∆L = 20 log( fm2 ) and i iterates over the critical bands. The modula-
tion frequency fm is the frequency of the hull curve of the audio signal. That
is, roughness R is increased by complex sounds. The structure of this formula
is similar to the one of information entropy. Signals with average frequency
have maximal roughness while extremes (low modulation frequency, exception-
ally high modulation frequency) will have low roughness, in the latter case be-
cause the individual sound components cannot be distinguished anymore.

Eventually, sharpness (in acum) is defined as follows.

S = 0.11

24∑
i=0

i.L.gi

24∑
i=0

L

(23.6)

As before, i iterates over the critical bands. L is the loudness per band and gi
is a function that remains at unit size up to the 16th critical band and increases
over-linearly afterwards. That is, the sharpness of a sound depends mostly
on the relative loudness of the high-frequency bands. The higher the band, the
more important. In summary, the scales of sensory pleasantness provide a sound
foundation for audio feature transformation. Tonality and loudness are heavily
used in audio understanding today. Roughness and sharpness should also not
be neglected.

300Hz, 3kHz

8kHz

1kHz, 10kHz

Figure 23.12: Frequency-Dependent Spatial Sound Perception.

Two further aspects of psychoacoustics require brief discussion here: sound
localization by binaural hearing and masking. The influence of binaural hearing
on sound localization is illustrated in Figure 23.12. There is a general tendency
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to locate sounds at specific places depending on their frequency. For example,
300Hz sounds are generally perceived as rather coming from the front while 1kHz
sounds will be perceived as having the source in the back of the subject. It may
be worth considering this issue in feature transformation, for example, in envi-
ronmental sound understanding applications (e.g. localization of car sounds).

Frequency

Sound Pressure Level

Masker

Masked Sounds

Threshold of Hearing

Figure 23.13: Audio Masking Example.

Eventually, masking of sounds is a problem of fundamental importance in
psychoacoustics, in particular, in compression applications. We mention it only
briefly, because it has – so far – only been of minor importance in media under-
standing. The principle is shown in Figure 23.13. A masking sound (masker)
with high sound pressure level (SPL) changes (increases) the hearing threshold
locally. Sounds with neighboring frequencies that fall under the new curve are
masked, i.e. not perceived by the listener. The amount of increase of the thresh-
old depends on the frequency and the SPL of the masker. Masking has been
investigated in detail in psychophysics. The results are used in audio compres-
sion to neglect particular segments of the source signal. It appears reasonable to
imitate human masking behavior in media understanding. For example, the mu-
sic genre classification problem could probably be simplified by the exploitation
of sound masking.

In the field of the psychology of vision we would like to limit ourselves to
introducing some fundamental terms and pointing out their potentials for appli-
cation in media understanding.

• Colorimetry investigates the relationship between physical light properties
and human color perception. Aspects include the three-stimuli-theory,
color models and the handling of color temperature. In particular the last
aspect has potential for further exploitation in media understanding.

• Visual acuity measures the capacity of the human visual system for spatial
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resolution, i.e. the clearness of seeing. Visual acuity is a property of the
individuum. It is thinkable to implement this aspect by calibration in
visual media understanding systems in order to provide a search tool that
truly represents individual human perception.

• Stereopsis investigates human perception of depth by stereo vision and
models it by depth maps. The entire research discipline is based on the
visual differences (disparities) caused by the different locations of our eyes.
The brain manages to create a spatial field of vision already in the early
stages of perception. The imitation of this ability in media understanding
would be desirable for all application domains that provide stereo data.
For example, stereopsis and stereo cameras could improve the automatic
detection of events in video surveillance (e.g. in patient monitoring sys-
tems) significantly.

• Eventually, the human visual system has a remarkable ability to analyze
object motion. Hence, it appears worth trying to combine object similarity
and movement similarity in visual media analysis. Such an approach would
use coarse representation for the object shape (e.g. shape moments) but
detailed methods (motion trajectories) for motion description. Application
scenarios include sports video analysis and video surveillance.

We conclude that the psychology of perception is of highest significance for
media understanding. Man is our measure. A media understanding system
that ignores that, will fail. With respect to the fundamental issues of media
understanding, psychophysics has a generally positive influence on the semantic
gap problem, because it improves the context of the input data. Furthermore,
there is a tendency that noise will be eliminated by psychophysical transforms.

This chapter and the last were concerned with human-centered problems. We
investigated the influence of media on perception, cognition and high-level think-
ing. The results will – hopefully – help us to implement more human-like media
understanding systems. The next two chapters are dedicated to this practical
problem. We gather and investigate methods for the practical implementation
of semantic template matching.



Chapter 24

Description by Templates

Revisits the fundamental convolution problem, links it to human similarity mea-
surement, lists templates for audio, biosignals and stock data, and introduces
static and dynamic models for visual media representation.

24.1 Convolution Everywhere

The template is the central carrier of semantic information in media understand-
ing. Comparing the results of feature extraction for some media object to a given
template results in a belief score for their similarity. Identification is a high belief
score. Doubt is a low one. This chapter is dedicated to the template matching
problem. Template matching is of paramount importance in feature extraction,
hence, we already discussed various aspects of the problem and introduced sev-
eral approaches in previous chapters. Here, we endeavor to give a systematic
overview over the methods applied for template matching – independent of the
underlying type of media. Template matching falls into two subproblems.

• Representation of the template

• Similarity measurement between template and stimulus

The first problem is a feature transformation problem. Templates are usually
given as real-world objects, i.e. media objects of the same morphology as the
stimuli (examples). Their semantic content has to be encoded in a description
like for all other input media. The similarity measurement problem is typically
solved by convolution. In the first two parts of this book, we have already

443
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encountered positive convolution (similarity measurement, for example, by the
dot product) and negative convolution (distance measurement, for example, by
Minkowski distances). In Chapter 28, we will see that these forms of convolution
are the end points of a continuum on which we can measure similarity – directly
or as some form of generalized distance.

In the four sections of this chapter, we introduce a number of relevant meth-
ods for template representation and template matching. As it is the goal of this
book, we make every effort to identify communalities and differences between
the methods. Such communalities do exist, in particular, between media types
with similar dimensional structure. Therefore, the chapter is organized by media
types. After this introduction, the second section discusses template represen-
tations for audio, biosignals and stock data as well as for symbolic data (text,
bioinformation). The last two sections focus on visual media: Section 24.3 on
methods for representation based on statistics, Section 24.4 describes template
building methods that use deformable objects.

Why are template representation and template matching frontiers of media
understanding? Because of their outstanding importance. In fact, there are
only two options to introduce context (semantic information) in the media un-
derstanding process: by ground truth and by templates. The first method has
its limitations – as we discussed in several places. It is a very difficult, not to say
almost impossible, undertaking to define a well-balanced, representative ground
truth for most media domains.1 The introduction of templates is, in comparison,
straightforward. Hence, a unified theory for template representation and match-
ing would be desirable. Unfortunately, this theory has not been defined yet.
This chapter should help to push the semantic frontier of media understanding
in this direction.

The remainder of this first section deals with the template matching prob-
lem. First, we state the general convolution model and add some psychological
aspects of human similarity perception that will be discussed in detail in Chap-
ter 28. Then, we introduce and cluster several techniques that were proposed for
template matching. Some of these methods were already used in earlier chapters,
others have to be employed together with specific template representations.

Interpretation is the central building block of most feature transformations.
In the second part, we distinguished two types of interpretation operations: au-
tocorrelation and crosscorrelation. The first compares one part of a media object
to another. The second method compares the media object under investigation
to some given template. Among the templates we discussed for feature trans-
formation were moments (e.g. Zernike moments, Hahn moments, angular radial
transform, etc.), base functions (angular functions, wavelet mother functions,
contourlets, etc.), local media properties (visual keywords, gradient histograms,

1This fact may be seen as one form of Plato’s problem (in concept theory).
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etc.) and quantized references (e.g. bags of features). This non-exhaustive list
makes clear how important crosscorrelation by templates is for the semantic
interpretation of media content.

Crosscorrelation is implemented in media understanding as some form of
convolution. For example, discrete transforms are usually based on convolution
by the dot product. This form of crosscorrelation is a similarity measure. The
result is maximal where the input media data match the template data. Other
methods, e.g. histogram comparison, are typically based on convolution by dis-
tances functions. There, the result is minimal where input data and template
data match. We named these two forms of crosscorrelation positive convolu-
tion and negative convolution. We can say that crosscorrelation is generally
operationalized by convolution. Since crosscorrelation is one form of similarity
measurement, convolution operators are similarity measures.

As the author could show in earlier work, positive convolution and negative
convolution define a scale of similarity measurement on which all similarity mea-
surement methods listed in the Appendices can be positioned. The two extremes
of this scale are the dot product and the L1 metric. All other measures can be
expressed as linear combinations of these. For example, the statistical correla-
tion coefficient and Tversky’s feature contrast model lie both in the center of
the scale. In consequence, any form of template matching is also a combination
of the two extremes. See Chapter 28 for details.

Aspect Positive Convolution Negative Convolution
Notation A⊗B A⊗̄B
Representative Dot Product L1 Norm
Measure Type Similarity Distance
Stimuli Separable Integral
Thinking Taxonomic Thematic
Availability Surface Deep
Complexity Low High
Concept Theory Classical Prototype

Table 24.1: Aspects of the Two Fundamental Convolution Operations.

Hence, before we continue with concrete examples for template matching
methods we consider it beneficial to investigate the differences between positive
and negative convolution. Table 24.1 lists the most relevant aspects. The first
three aspects should be clear by now. Concerning the fourth, psychologists have
found out that positive convolution works best for so-called separable stimuli,
i.e. countable properties and on/off-values. Distance measures perform superior
for integral stimuli, e.g. the lengths of figures. Similarity judgment that is based
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on separable stimuli is called taxonomic (e.g. comparing species in a biological
taxonomy) while the holistic evaluation of the similarity of stimuli is called a
thematic judgment. Similarly to the type of stimuli, descriptions suitable for
positive convolution are sometimes referred to as surface features while integral
stimuli are called deep features. The latter should be harder to comprehend,
i.e. their complexity is higher than the complexity of separable stimuli. It is
important to note that complexity is judged from the semantic point of view
of human cognition here. That is, surface features are easy to comprehend for
humans – but hard to extract for machines and vice versa. Eventually, there is
an analogy between similarity judgment and concept theories. Separable stimuli
can be seen as representing the conditions of the classical theory which could
be operationalized by positive convolution. In a similar fashion, prototypes can
be seen as integral descriptions. We conclude that positive convolution and
negative convolution are the two fundamental forms of template matching and
that templates are the containers for context in media understanding.

In the remainder of this section we deal with a number of matching techniques
that were proposed for templates. Naturally, all of them are located on the level
of the categorization micro process. In the first two parts of the book we already
encountered a number of techniques for similarity measurement. We had the
earth mover’s distance for histogram comparison, the Hausdorff distance and
the bottleneck distance for visual template matching. The Fréchet distance M8
in Appendix B.3 is similar to the latter two. It measures the largest distance
between template and stimulus.

Figure 24.1: Template Metric Example.

Further micro-level measures discussed here are the template metric, the area
of overlap and the elastic matching distance. The principle of the template metric
is illustrated in Figure 24.1. The algorithm searches for the overlap between two
objects – one being the template – that minimizes the gray areas. The resulting
area of overlap is a measure for the similarity of two shapes, the sum of the gray
areas is a measure for their distance. Please note that the template metric can
be seen as the integral over the Hausdorff distance. Due to the aggregation, it is
less prone to noise – paid by higher computational effort. The template metric
fits naturally to visual template matching. However, it can also be employed for
any other form of template matching. The principle is: vary the overlay until
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the are of overlap is maximal.
The elastic matching distance is based on the idea of similarity meta models

and of dual process models (see Chapter 28). For two descriptions fx, fy with
properties xi, yj it searches for the minimal assignment with respect to stretching
function s and distance m−1.

melmd(x, y) = min
i,j

∑
m−1(xi, yi) + s(xi, yi) (24.1)

For visual objects (typically, curves), function s can be defined as the distance
in length and function m can be defined by the inverse cosine measure. Then,
the elastic matching distance sums up over a similarity measure (cosine) and a
distance measure (e.g. city block metric), which is the requirement for a dual
process model. Furthermore, the elastic matching distance has a signature very
similar to the Mallow’s distance. The major difference is the usage of summation
instead of multiplication. Hence, the elastic matching distance should be more
forgiving for suboptimal data.

The common problem of the presented similarity meta models for template
matching is their computational complexity. Most methods require the identi-
fication of properties with minimal/maximal distance (e.g. neighboring edges),
some even twice. Furthermore, template matching is cursed with a number of
degrees of freedom: position of the template, scale, and some semantic aspects
(e.g. those discussed in Chapter 12 for semantically meaningful wavelet mother
functions). The dimensionality problem is a typical side effect of hot media, such
as semantic templates. General simplification approaches that were suggested
are subdivision of the search space and parameter interpolation. Search space
simplification can be reached by presenting only a limited number of options per
dimension. Parameter interpolation aims at the elimination of entire dimensions
by predictive coding through other dimensions. Factor analysis methods can be
used to reach this goal.

In conclusion, the usage of context in the form of templates requires solutions
for their representation and for matching. Matching means convolution, mostly
by similarity meta models. Strategies for efficient representation are discussed
in the remaining sections of this chapter.

24.2 Templates for One-Dimensional Media

The one-dimensional data types discussed here are audio, biosignals and stock
data. Bioinformation and text – the symbolic data types – are only briefly
considered. All of the quantitative data types have the same basic model of
template matching in common. It consists of the following three steps.

1. Signal smoothing
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2. Template preparation

3. Template matching

The third point has already been discussed in the last section. The matching
methods applied on one-dimensional data are not different from those applied on
visual data. Signal smoothing is the necessary prerequisite of template match-
ing for one-dimensional data. It would hardly make sense to apply a template
directly on an audio stream or a biosignal: In audio, the sample rate is too high
and – as we could show in the second part – the sound information is distributed
over all samples. Biosignals, on the other hand, have a too bad signal-noise-ratio,
i.e. template matching directly on the signal would be biased significantly by
the noise component. Even stock data (few samples, no noise) benefit from
smoothing as the popularity of sliding averages in technical analysis indicates.

Signal smoothing is typically achieved by averaging. Averaging can be per-
formed for static or sliding windows by any statistical moment of first order.
Frequently, the mean is used since – despite all noise – the media types under
consideration usually do not contain strong outliers. In the audio domain, static
windows are employed more often than in the biosignal and stock domains where
sliding average methods are prevalent. The result of signal smoothing is a hull
curve that describes the shape of the signal over large spans of time.

The remainder of this section is dedicated to the second step of the basic
model: template preparation. We discuss the fundamental types of templates
that have been employed successfully on media data. First, we focus on the
audio domain, then biosignals and, eventually, stock data.

ADSR Template Rhythm Pattern

Figure 24.2: Audio Template Examples.

In the audio domain, we have already encountered a number of templates
based on the hull curve. The left part of Figure 24.2 illustrates the attack, decay,
sustain, release model (ADSR) of sounds that is, for example, implemented in
the MPEG-7 log attack time descriptor. According to this model, every sound
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that is part of an audible sensation consists of a strong fade-in component, a short
decay, longer sustain and, eventually, a fade-out. The hull curve of an isolated
sound can be described well by this model. All that is required is adaptation to
the template which is usually implemented by some similarity meta model and
an acceleration technique such as parameter interpolation.

In the last chapter we defined the roughness of a sound by the modulation
frequency, which is the frequency of the hull curve. This high-level description
of an audio sensation may also be seen as an application of template matching.
Generally, we can use the hull curve to measure the fundamental frequency of a
sound. Coarse estimation of the fundamental frequency can be reached by the
sequential convolution of the hull curve over frequency templates. The one with
the extremal matching score receives the highest belief.

In a similar fashion, template matching can be used to detect arbitrary
rhythm patterns. For example, the right part of Figure 24.2 describes a si-
nusoid pattern. In the same way, pulse and beat patterns can be defined and
measured by template matching.

α Wave β Wave

δ Wave θ Wave

Figure 24.3: Waveforms of Biosignals.

In the biosignal domain, it makes sense to derive the templates for hull curves
from the fundamental wave types. Four wave types are illustrated in Figure 24.3.
The α wave with a typical frequency of 10Hz is a result of relaxation and closed
eyes (not sleep). Children show α frequencies below 8Hz. The β wave has a
frequency around 25Hz. In contrast to the α wave which can most easily be
captured from the posterior regions of the head, β waves can be captured in
the front part. Such a wave indicates (anxious) thinking or movement of the
subject, rhythmic β waves indicate drug effects. The δ wave has a frequency
around 3Hz and the highest amplitudes of all wave types. This wave indicates a
sleeping subject (adult or baby). It can be measured at the front and the back



450 CHAPTER 24. DESCRIPTION BY TEMPLATES

of the head. Eventually, θ waves have a frequency around 6Hz and are typical
for children. Meditating adults also show θ waves, where it may indicate arousal
as well. Furthermore, θ waves indicate several mental disorders.

For biosignals with higher frequencies (e.g. γ waves of 100Hz) it is recom-
mendable to generate a hull curve for matching by smoothing over ten samples
or more. For the detection of low frequency waves it may even make sense
to perform the convolution with a template that represents an idealized wave
(without smoothing). This approach makes sense for α waves and θ waves. The
irregularity of δ waves, however, makes this signal type a hardly suitable ground
for template matching.

Rectangle and Triangle Wedge/Flag

Cup with Holder Head and Shoulders

Bullish Gartley Bullish Butterfly

Figure 24.4: Chart Template Examples.

The stock domain is very interesting for template matching. Such methods
have been used in technical chart analysis for decades. Unfortunately, this has
been done with inferior strictness – ’observing’ a particular pattern wherever
desired. The methodology of media understanding, in particular, the more rigid
categorization techniques could turn stock data template matching into a less
arbitrary, more successful prediction method.
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Figure 24.4 illustrates the hull curves of seven important stock data pat-
terns. Like for the biosignals above, we explain their meaning in the subsequent
paragraphs. Their application is straightforward. Since stock data has an ex-
ceptionally low bandwidth (often, one sample per day), we can even skip the
signal smoothing step (or apply a sliding average). The rest is template match-
ing by negative convolution (frequently used method) or positive convolution
(also interesting, if notations are interpreted as separable stimuli).

The upper left diagram of Figure 24.4 shows a rectangle and a triangle. The
first pattern stands for a share that moves within a support and a resistance
line. The smaller the vertical component of the rectangle, the more constant
(predictable) the share. The triangle indicates a market of increasing insecurity.
Trading volumes are decreased until the market escapes the triangle. The flag
in the first row of the figure indicates an increasing market from which some
of the bears (pessimists) extract their contribution while more bulls (optimists)
invest. The flag is one of the most common templates in chart analysis. Theory
says that at the end of the flag the course of the share would escape into the
direction of the flag (here: up).

The second row of the figure shows a cup with holer and the head and shoul-
ders pattern. A cup with holder is typically located after a longer period with
varying exchange volume and before a boom/depression. The left part of the
cup stands for bearish consolidation and the right for re-investment. The holder
covers the time span in which some bears extract their profit. Head and shoul-
ders is a typical reversal patterns. The example shows the end of a positive
trend and its reversion into a negative one. The two shoulders are produced by
bearish/bullish behavior on small scale (left: indicating, right: reacting) while
the head represents the actual turn of the market.

The two templates in the bottom row of Figure 24.4 stand for reversal pat-
terns as well. At the end of the Gartley pattern the trend should move upwards.
The first peak serves as an indicator for the later boom. The butterfly pattern
is similar to the Gartley, also indicating a later boom. The major difference is
here the grater variance in the pattern which reduces its belief score.

We would like to emphasize the two major shortcomings of these patterns in
technical chart analysis again. Firstly, they are all based on partially dubious
experience. Most of these patterns were suggested by individuals based on their
experience and not as the result of quantitative analysis. It would be desirable
to investigate the patterns of stock data quantitatively and to develop indica-
tor patterns that are not influenced by theories about bullish/bearish behavior.
Secondly, these patterns are used very generously in technical chart analysis.
Cups with holder, for example, can be interpreted into almost any curve. If
these indicators should be meaningful, they would need to be applied in stricter
form – of course with the disadvantage of fewer hits.
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There are hardly any templates for the identification of symbolic media data.
Exceptions are certain gene patterns that can be recognized by structural align-
ment – which may be seen as a form of a similarity meta model. In the text
domain, grammar models are one exception. However, these templates are lo-
cated on a meta level and serve rather as models for patterns.

In conclusion, template-based understanding of one-dimensional media ob-
jects is a sequence of smoothing, representation and matching. For audio, biosig-
nals and stock data many useful templates do exist that can be employed for
the extraction of semantically meaningful descriptions.

24.3 Static Visual Templates

This section and the next introduce template methods for visual content. Due
to the visual connotation of the word template it is not surprising that a great
number of visual methods has been proposed. Some of these methods are so spe-
cific that template representation and template matching cannot be separated,
or, that the methods make only sense for the type of representation. Hence, we
explain the matching methods – where needed – in place. Furthermore, there is
often no smoothing in visual template matching. Of the two sections, the first
focusses on static template matching, i.e. the adjustment of the data to the
template. The next section focusses on dynamic template matching, that is the
adaptation of the template to the data.

In this section, we order the methods by decreasing model complexity, which is
a generally desired goal in template matching. Where possible, we compare and
group methods, even though this can – due to the heterogeneous nature of the
templates – seldom be performed. Visual templates can appear in various forms.
In the first two parts of this book we already encountered visual keywords (simple
approach, complex template), discrete transforms based on angular functions
(complex approach, simple template), contour/edge-based methods, trajectories,
etc. In these sections, we add complex methods such as angular signatures, scale
spaces based on curvature, active contours, etc. In particular, below we discuss
three types of visual templates.

• View-based templates

• Point-based templates

• Curvature-based templates

View-based representations are straightforward. Figure 24.5 shows an exam-
ple. The object of interest is represented by expressive views. It goes without
saying that view-based methods can easily be applied on 3D model information
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Figure 24.5: View-Based Object Representation.

but only with great difficulties on pixel-based image and video data. There, the
view can be a set of visual keywords or a bags of features description. MPEG-7
provides a descriptor for view-based templates. The 2D/3D Shape Descriptor is
able to capture a 3D model together with its views. Since the views will usually
be redundant the selection of views can be considered a minor problem: every
view that helps the media understanding process should be included.

Figure 24.6: Point-Based Object Representation ( c© CNBC ).

Figure 24.6 shows an example for a point-based face template (left) and the
matching with a media object. In the example, we use manually defined fea-
ture points and compare them to mechanically detected keypoints based on edge
curvature. Generally, point-based templates can be described as super-local de-
scriptions. Local features are aggregated and clustered. In the second part, we
already stressed the importance of object boundaries for the expressive descrip-
tion by local features. Here, we use the opposite argumentation for reaching
the same goal. Interest points can very well be used to formulate templates of
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objects. The suggested approach of comparison of template point sets to ex-
tracted keypoints depends in its success only on the quality of the interest point
detection method. Every method that is not exclusively based on curvature but
as well on repetitive patterns (e.g. the Gestalt laws suggested in Chapter 14)
can be employed for this purpose. The general process will always consist of the
following steps.

1. Preparation of a point-based object representation

2. Application of a liberal interest point detector

3. Clustering of neighboring points

4. Template matching

The clustering step serves as smoothing and quantization of the point space.
For the matching step, for example, the Mallows distance can be used – but as
well one of the other similarity meta models.

The group of curvature-based template representation methods is related to
the point-based ones. After all, point features are usually extracted based on
high curvature. The major difference lies in the direct application of curvature
information here. For illustration, we introduce three methods: two based on
angular information and one scale space.

Object

Length

Angle

Figure 24.7: Turning Function Example.

The principle of the angular turning function is laid down in Figure 24.7.
The object/template contour is transformed into a signature of edge lengths
and the angles between pairs of edges. Matching can, for example, be performed
by dynamic warping. Since dynamic warping is a rather complex and resource
consuming procedure the signature can also be simplified by neglecting the length
of edges and comparing the angular signatures by a distance measure. In contrast
to the full signature, however, the angular signature does not carry the entire
object information anymore. For further simplification, the angular signature
can be reordered or quantized into a histogram.
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We see that the template representations become simpler from method to
method. Views are full visual objects, point sets approximate the visual in-
formation, turning functions represent the object outline by a signature. The
shape context method reduces the model even further and builds a histogram.
The algorithm takes the following steps.

1. Detect the edges of the visual template/object.

2. Compute a shape context histogram by the following steps.

(a) Select n points from the edge representation.

(b) Compute length and magnitude of the local gradient from each se-
lected point to each other selected point.

(c) Build a histogram of the logarithmic polar coordinates of the gradi-
ents. The result is a matrix of angles and distances.

3. Transform the histogram to an array g by a zigzag scan and normalize g
by the mean.

Principally, any similarity or distance measure can be applied to compare
two arrays. The authors of the shape context model suggest a complex distance
function, in which the χ2 characteristic of the two arrays is the central element.
For two arrays x, y and a free parameter a it takes the following form.

d(x, y) = a
1
2

∑ (xi − yi)2

xi + yi
(24.2)

This term measures the quality of the match on the level of the points.
Other terms of the distance function measure differences in brightness, costs of
transformation, etc.

t=0 t=10 t=100

Figure 24.8: Curvature Scale Space Example.

The last method to be discussed in this section is the curvature scale space as
it is, for example, used in the MPEG-7 Contour-Based Shape Descriptor. The
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idea – implementation of the scale space principle for the curvature of object
outlines – is illustrated in an example in Figure 24.8. The scale parameter t
controls a Gaussian smoothing process that is applied on the angles between
edges and the flexion of edges. Over t, complex shapes are reduced to geometric
primitives that can easily be described by shape moments, the simplest form of
template representation. For the matching, an iterative procedure is suggested:
from the coarser levels of representation towards the more detailed ones. In
summary, this method is very similar to the application of scale spaces for the
representation of point features.

All of the presented methods are practically useable. They have in common
that a static representation is computed from the template content. The scale of
methods allows for selecting the suitable technique for a particular media under-
standing problem with respect to model complexity and redundancy. Generally,
a higher degree of model complexity and informativeness will be paid with higher
redundancy and higher resource consumption. This decision cannot always be
left to the system designer, in some cases it must be taken ad hoc. Then, the
dynamic template models discussed in the final section of this chapter are of
interest.

24.4 Dynamic Template Adaptation Models

This section extends the brief introduction of energy-based contour models in
the first part of the book. There, we gave an example of an active contour for
the description of an object outline. In this section, we describe the underlying
model in greater detail, explain the process of model adaptation and, eventually,
the matching procedure between stimulus and template. As already mentioned,
the active contour approach takes the direction opposite to statistical template
representation. Here, we adapt a model to given data, there the data to a given
template. Hence, active contours are dynamic models with all advantages and
disadvantages, in particular, higher flexibility and the risk of overfitting and
suboptimal solutions.

Figure 24.9: Spline Example.

The essential building block of an active contour (or, snake) is the spline.
Figure 24.9 shows an example. Mathematically, a spline is a polynomial function
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that is defined by control points. The curve is smooth for the first few derivations.
For object representation, we have as a necessary requirement that connected
spline segments must have smooth transitions. The spline for given control
points can under certain conditions be found analytically or – as often – by a
heuristic procedure, e.g. expectation maximization.

t=0 t=10 t=100

Figure 24.10: Adaptation of an Active Contour over Time.

One or a group of splines is the basis of every snake. The snake is used to
describe the contour of an object – in our case a template (e.g. given as an edge
map). Essentially, the snake is the spline model that fits best to the given object
outline. What best means here is discussed in the next paragraph. Figure 24.10
shows an example of a snake. The time parameter t indicates that finding the
snake for the given splines is an iterative optimization process. With increasing t
the spline template fits better and better – however, not beyond a certain degree
– to the object contour.

The evolution of this process is steered by the template matching function,
which is typically defined as follows.

e =
∑

eint(fi)− eobj(fi)→ min (24.3)

That is, the total energy e for a given spline fi = (xi, yi) is the sum of two (in
some models, even more) components. The first stands for the internal energy
(i.e. resistance of the model against deformation) and the second for the object
energy (i.e. the degree of adaptation to the input data). Internal energy should
be minimal: the model should be deformed as little as possible. Object energy,
on the other hand, should be maximal in order to capture the outline of the
object well. The tension caused by the opposite directions of these two energy
components creates the optimization problem of the active contour. The internal
energy can be defined in the following way.

eint = we

∣∣∣∣∂f∂i
∣∣∣∣2 + ws

∣∣∣∣∂2f

∂i2

∣∣∣∣2 (24.4)
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Here, we is a weight for elasticity, ws is a weight for stiffness. The internal
energy is increased over-linearly by a bent spline (first term) and by variable
curvature (second term). The configuration of the two weights determines which
aspect receives the higher penalty. In the simplest form, object energy can be
defined as follows.

eobj = wline
∑
i

o(li) (24.5)

Here, o(li) is the gray level of the input object at location li, i iterates over
all media samples that are covered by the snake, and wline is a weight the defines
the attractive side of a contrast. Depending on the brightness scale, a positive
weight will stand for attraction to dark pixels and vice versa. Practically, the line
term in object energy is supplemented by components for edges (e.g. modeled
by gradients) and connection points. However, the basic idea remains the same:
minimal deformation at maximal quality of fit.

Active contours perform some sort of negative convolution (quality of fit)
while taking certain noise components into account (e.g. stiffness term). It is
one nice aspect of the model that depending on the needs, optimization criteria
can be added or removed. The optimization process is usually implemented by
some dynamic programming algorithm. Any global optimization procedure –
including those discussed in the second part – is applicable.

In conclusion of this chapter, template matching is a crucial building block
of feature extraction for media understanding. Templates contribute to a higher
semantic level of the media understanding application and less polysemy – paid
with higher dimensionality of the description problem and worse computational
performance. Its importance and the diversity of the applied methods makes
template matching a frontier of media understanding. We believe that future ef-
forts will see a unification of template matching methods based on the three-step
procedure of representation, smoothing and mapping, where the latter means
one or another form of convolution. We are positive that what is actually re-
quired is not more research on representation methods but a unified theory of
similarity/correlation/convolution. Chapter 28 contributes to this end. Before,
however, the next chapter builds semantic applications on the introduced tem-
plate matching methods and other feature transformations.



Chapter 25

Semantic Descriptions and
Applications

Introduces the semantic scale, describes the usage of low-level descriptions for
semantic enhancement and semantic applications in the audio and the visual
domain.

25.1 The Semantic Scale

Media understanding applications need to be semantic. What does that mean?
It means that the application has to judge the content of media objects in the
same way as humans do. Neither should the application fall behind human rea-
soning, nor should it be ahead of our perception apparatus. Judging the content
means recognizing objects, patterns, templates, spatiotemporal relationships,
etc. – the entire domain of perception and cognition.

This chapter is dedicated to the discussion and reflection of the ambitious
goal to find the right level of semantics. The central element is presented in
the first section: the semantic scale. It should sensitize the reader with respect
to the fact that the ideal semantic level is a fragile thing. What the machine
should imitate and to which extent depends on the position of the user, her
views about the media domain, etc. Media-theoretic aspects are involved as
well as the level of expertise in the usage of media understanding systems and
many other factors. It is obvious that for being hidden and not retrievable the
large majority of these properties cannot be considered in media understanding
applications. Some, however, can. These are discussed in the subsequent sections

459
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of the chapter. The second section deals with low-level feature transformations
that can be contextualized to some level of semantic understanding. On top of
these and earlier introduced feature transformations, the last two sections review
some state-of-the-art solutions for semantic media understanding domains of
outstanding practical importance, namely face recognition, speech recognition
and emotion recognition.

This chapter builds on earlier introduced thoughts. In particular, in Chap-
ter 11 we discussed the term context as the operationalization of semantics in
media understanding. The context of an application determines how media con-
tent has to be interpreted. We said that time and location play an important
role. So will the genre for videos. It is a difference, if the anchorman of a
newscast or a comedian makes a joke.1 The context provides the direction for
the information filtering process implemented by feature transformations and
classifiers. The transformation of media samples into semantically loaded class
labels is influenced by a multitude of factors. For example, we introduced the
application of context in categorization. There, we have the ground truth as the
fundamental form of context. Ground truth is world information that defines the
meaning of media patterns. For feature extraction, we discussed the influence of
Gestalt laws on the perception of local features. This thought is prolonged in the
present chapter. In the second section we introduce feature transformations for
capturing symmetries and self-similarities in visual media objects. Among other
purposes, these descriptions provide the ground for the application of Gestalt
laws.

This section is dedicated to two theoretical issues of semantic media descrip-
tions and applications. First, we define the semantic scale for the localization of
media understanding efforts. Then, we discuss the chances and risks of defining
tailor-made application for – sometimes, narrow – media understanding appli-
cation domains. Since such applications are the topic of the last two sections of
this chapter, we consider it beneficial to clear the fundamental problems bound
to this scheme beforehand.

Where do semantic descriptions and semantic applications stand with respect
to concept theory? The question is relevant since, eventually, semantics and con-
text stand for the desire to load signs with strong denotations. From the the-
oretical point of view, the question cannot be answered. The concept-theoretic
approach depends on the semantic problem domain. In practice however, we can
say that theory theory triumphs. Semantic descriptions are the result of itera-
tive media understanding processes where everything is taken into account that
helps the – often, slow – enrichment of descriptions and (proto-)predicates. We
may state this as a general rule: Semantic enrichment will make use of whatever
knowledge is available about the views of the user and of whatever methods are

1In the latter case, it has to be better.
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available for the employment of this knowledge. Hence, semantic enrichment will
take place in feature extraction, categorization and refinement. We discussed se-
mantics in the earlier machine learning chapters – categorization methods cannot
be explained otherwise. Hence, the focus of this chapter is on the feature trans-
formations and on the applications composed of semantic transformations and
semantic categorization. We are positive that the semantic application is the
future of media understanding. From a media-theoretic point of view, it could
be argued that the media is the message implies putting the human in the loop
which can only be performed successfully in iterative applications, not in static
transformations nor in one categorization cycle.

Subsemantic Semantic Supersemantic

Semantic Gap

Human Judgment Metric DistancesLow-Level
Descriptions

Figure 25.1: The Semantic Scale.

Figure 25.1 introduces the semantic scale of media understanding. In the cen-
ter we have the desired – yet hard to define – level of semantics. The center point
– also the center of gravity of media understanding research – is surrounded by
two wings. The left wing covers what we call subsemantic methods, i.e. methods
that do not come up to the human standard of perceptual cognition. Between
subsemantic and semantic lies the semantic gap. In the literature, the semantic
gap is often seen as a problem of feature transformations that are too simple for
representing human high-level perception appropriately. And really, the best ex-
amples for subsemantic methods come from the feature transformation domain.
The zero crossings rate, however simple and useful, is clearly a subsemantic
representative of pitch/tonality. A color histogram is certainly an inferior color
description compared to human visual memory. The head and shoulders pattern
is only a simple operationalization of the complex interaction of bulls and bears
on a market, and so on.

The right wing is the new idea in the semantic scale. Supersemantic methods
are those that are clearly better than human perception – for example, audio fea-
ture transformations that do not suffer from the insufficiencies of human hearing.
From a purely logical point of view it appears surprising why we should consider
supersemantic methods inferior to semantic ones. Human-centered evaluation,
however, makes quickly clear that the vast majority of users prefers semantic
results because they can comprehend such results whereas supersemantic results
may appear interesting sometimes but, often, are just misunderstood or not un-
derstood at all. After all, evaluation in media understanding is based on human
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ground truth, not a machine-generated ideal ground truth. As already stated
a couple of times in the third part of this book, man is the measure in media
understanding. Human judgment is what we define as semantic on the semantic
scale. Supersemantic behavior is as undesired from a system as is subsemantic
behavior.

Today, typical examples for supersemantic methods hardly exist in the fea-
ture transformation domain, because psychophysical results have already found
application there. Insufficiencies such as masking, spatial distortion, nonlinear
color perception, cognitive and statistical illusions are imitated in description
methods by heuristic scales and transformations. In the categorization domain,
however, there is significantly less sensibility for this issue, which is surprising if
we consider the declared goal of machine learning: imitation of human learning.
For example, the metric distances frequently used in the vector space model and
related classifiers (k-means, k-nearest neighbor, self-organizing map) have been
proven inadequate representatives for human similarity judgment. Some aspects
of similarity measurement for integral/quantitative descriptions are not covered
by the metric distances and some aspects covered by the underlying metric ax-
ioms (for example, the triangle inequality) are not human-like. Metric distances
are perfectly logical, but unlike human behavior. Hence, they can justly be
called supersemantic.

We conclude that feature transformations tend to be subsemantic and catego-
rization methods – in particular, the micro processes – tend to be supersemantic.
Dealing with subsemantic feature transformations is the topic of the next section.
Dealing with supersemantic categorization methods is the topic of Chapter 28.
Assembling subsemantic descriptions and supersemantic classifiers to semantic
applications is the topic of Sections 25.3 and 25.4.

However, before we continue with turning subsemantic feature transforma-
tions into semantic ones, a second issue requires discussion. Solving certain
semantic media understanding problems by tailor-made applications is an im-
portant area of media understanding research. These applications push the
practical frontier of media understanding. Typical semantic domains are face
recognition, speech recognition, emotion recognition, violence detection, music
genre classification, etc. The common advantage of tailor-made applications
is their practical relevance. Face recognition is required for a large number of
real-world applications. Speech recognition is ubiquitous. Violence detection for
surveillance systems would be highly desirable. The common problems of tailor-
made applications are that they require ground truth (hard to define, hard to
maintain, legal issues, etc.) and the danger of over-narrowing the domain.

With over-narrowing of the domain we describe the following phenomenon of
media understanding research. The experimenter defines a narrow context for his
applications – often, by a small ground truth data set, sometimes even the other
way around – develops tailor-made feature transformations with ’magic’ quanti-
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zation steps (e.g. heuristic weighting) and chooses a categorization method with
strong potential for overfitting (e.g. a random forest). Evaluated by the narrow
ground truth, the tailor-made application will ’solve’ the semantic application
problem. However, the solution will remain irrelevant and the frontier unaltered
if the domain has been narrowed too far: beyond practical relevance. For exam-
ple, a speech recognition system that captures only a few words is practically
irrelevant. A music genre classifier that covers only the work of one artist will
not be of much use, etc. Over-narrowing is the case where the practical rele-
vance of the semantics are not given. It is indicated by small ground truth sets.
Over-narrowing applications are of little use.

In conclusion, the semantic scale should sensibilize the reader for two gaps:
the subsemantic one, mostly caused by insufficient feature transformations, and
the supersemantic one, primarily caused by categorization methods. In the next
section, we review methods that try to improve subsemantic feature transforma-
tions for the better imitation of human behavior.

25.2 Semantic Feature Transformations

The feature transformations that we presented in the first two parts of the book
were hardly ever on a semantically high level. The mel frequency cepstral coef-
ficients (MFCC), for example, that play such a prominent role in speech recog-
nition and all other audio understanding applications, are on a fairly low level.
The entire recipe consists of template matching with a sine function, psychoa-
coustic quantization and decorrelation by the cosine transform. None of these
elements would have a semantic meaning on the level of human cognition. There
is, though, semantics in the MFCC, not in the transformation, but in the usage.
The extracted pitch information has a semantic meaning for the listener of a
piece of music.

The methods introduced in this section follow the same idea. The features
themselves are rather simple but meet a semantic category of human life. This
way, we come in reach of the ambitious goal to represent semantic information by
descriptions. Below, we discuss feature transformations capable of representing
semantics in the area of audiovisual perception. Transforms for other media
types are discussed together with their applications in the next section. In the
visual domain, we focus on the intelligent representation of color information
and the semantic interpretation of contrast as symmetries and self-similarities.
In the audio domain, we focus on one – due to its nature – often neglected, yet
important aspect of audible sensations: silence.

Furthermore, we consider one particular type of description in this section
that represents the biggest semantic gap: random numbers as arbitrary descrip-
tions. In earlier work, the author could show that such descriptions may be used
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in a highly semantic way, if enriched by intelligent feature selection methods or
the description optimization kernel functions discussed in Chapter 18.

The first feature transformation on our list is a silence descriptor. For ex-
ample, silence can be extracted as short-time energy relative to a minimal loud-
ness threshold εl. Whenever the average energy for a time frame falls below
εl the segment is considered to be silence. Why is silence a semantically rele-
vant description? Silence is in many respects typical for certain individuals and
applications. For example, the mixture of speech and silence can very well be
used for speaker identification. Furthermore, silence is an interesting indicator
for the segmentation of environmental sounds. For these applications it is as
the proverb says: important is not what is being said but what is not being
said. Heinrich Böll transformed this idea into a short story: Murke’s Collected
Silences (available in [38]).

In the visual domain, a first context for the application of low-level feature
transformations is the recognition of paintings. There, low-level yet semantic
color descriptions are of highest usability. For example, the Itten color wheel
can be used to describe image content with respect to pure colors – a similar
idea to the representation of pure tones in the Fourier transform. The Itten color
wheel distinguishes 18 colors. It starts with pure red, yellow and blue, derives
green, orange and purple from the pure colors and uses these six basic colors
to define further six gradations, for example, light orange between yellow and
orange. The color circle follows the direction of the rainbow: yellow, orange,
red, purple, blue and green. Interesting aspects of the color wheel – developed
in the context of the Bauhaus – are that it neglects human visual perception of
colors. Green is only represented by two colors, red by four colors. This color
model gives an interesting semantic re-weighting of the importance of colors in
modern societies (and their media).

Figure 25.2: Kansei Color Composition Templates

Another interesting semantic set of low-level features are the Kansei features.
Here, we focus on the color descriptions. The central idea is that Kansei color his-
tograms should represent the feeling expressed by visual works. Therefore, they
are aggregated over particular regions using a dominant color approach. Figure
25.2 shows the four basic composition templates. For each of the depicted re-
gions, the dominant color is computed as the average along a perception-based
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color model. Then, the color histogram is constructed from colors of the re-
gions. The authors of the Kansei approach suggest specific similarity measures
for their descriptions. However, we consider the template-based approach the
major innovation in Kansei features. Like the MPEG-7 color structure descrip-
tor, Kansei features are able to capture color semi-locally. We believe that the
four presented templates should be supplemented by the typical patterns of ap-
plication domains such as family photos, video shot types, etc. The combination
of low-level color information and semantic templates has certainly potential.

Figure 25.3: Symmetries (left) and Self-Similarities (right, c© CNBC ).

Symmetries and self-similarities are of highest significance for human visual
perception. Unconsciously, we recognize several types of symmetries in objects
and use this information to classify objects and to eliminate redundancy. The
laws of Gestalt that were already mentioned several times are a practical con-
sequence of this sense. Figure 25.3 shows a practical example. The left image
shows some symmetry axes in the leading example. Symmetries can be detected
in the face, clothing, background, text (e.g. verses), etc. The right side of the
figure shows some self-similar areas. Some are trivially unicolor, while others
show the same texture and shape. The visual example should make clear that
these image properties with partially high-level semantics should be extractable
by low-level feature transformations.

A straightforward approach for the detection of symmetries is the usage of
edge information and of ridge detection. These methods should be able to extract
symmetry axes along contrast lines, but not within objects. Within objects, we
suggest the following technique. Arbitrary symmetry axes in visual objects can
be extracted by usage of the Lie group SO(2). For angle φ, the rotation group
takes the following form.

SO(2) =
(

cosφ − sinφ
sinφ cosφ

)
(25.1)

A simple symmetry feature transformation for given objects could be com-
posed of the following steps.
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1. Center the object at the point of gravity.

2. For all symmetry axes described by an angle φ of interest, perform the
following operations.

(a) Perform the rotation using SO(2).

(b) Compute a score for every line of the object by taking the contrast
in image intensity of the left and the right side of the symmetry axis.

(c) Assume symmetry, if the sum of all line scores remains below a pre-
defined threshold.

Alternatively, the Radon transform can be used to detect symmetry as in-
variance of the spectrum against 180 degree rotation. In fact, the suggested
scheme is very similar to a Radon transform.

Self-similarity is operationalized by autocorrelation, i.e. template matching
between the entire object and its parts. A self-similar feature transformation can
be based on texture features or on the semantic aggregation of interest points.
For example uniform distribution of interest points over a segmented area will
indicate high self-similarity.

Another idea that appears promising is to base a self-similarity feature trans-
formation on fractals, in particular, on iterated function systems (IFS) for the
construction of self-similar patterns. The general approach is to find an IFS
algorithm that is capable to describe the region supposed to be self-similar. In
the past, such approaches have, for example, been used in image compression.
We suggest the following algorithm for self-similarity detection in a visual object
o.

1. Define the archetype of the self-similarity pattern o0 = T0(o) by image size
reduction T0.

2. Apply the contracting image transform oi = Ti(oi−1)

3. If the distance d(oi, o) ≥ ε return to Step 2

The idea behind the first step is that if an object is self-similar than a smaller
version would be a fair representative for the whole. Therefore, we shrink the
image in order to provide a starting point for the IFS. The contracting image
transform has to satisfy the condition |Ti(o1)−Ti(o2)| < a|o1− o2| for arbitrary
objects o1, o2 and a contraction parameter a ∈ [0, 1]. Typically, the contracting
transform will be composed of the following steps.

1. Image size reduction of the input object

2. Duplication of the object
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3. Rotation of one instance

4. Merging of the two instances

This recipe allows, for example, the construction of self-similar structures
such as Barnsley’s fern. In visual media understanding, the archetype plus all
transforms provide a description of the self-similarity of object o. A self-similar
object will neither have an IFS with very few transforms (indicates unicolor)
nor with a very large number (indicates missing contraction, i.e. missing self-
similarity). Hence, the number of transformation steps is already an indicator
of the self-similarity of an object.

Eventually, the distance function d will usually be based on the attractor o.

d(x, y) = inf(α|x ⊂ αy ∧ y ⊂ αx) (25.2)

Here, αx denotes object x with a border of width α. The distance of two
objects is defined as the border that has to be added to each of the two objects
to make it cover to other object. A contracting IFS will develop object x =
T0(o) as closely to the attractor y = o as desired. Alternatively, for example,
the Hausdorff distance can be used to measure the similarity between IFS and
attractor based on the outline. If the object content should also be considered,
the template metric or some other measure discussed in the last chapter can
be used. One last thought in this respect is using the fractal dimension as a
description of the self-similarity of an object. For IFS it is defined as follows.

f with
∑
i

cfi = 1 (25.3)

That is, we are looking for the dimension f that transforms the sum of all
contraction parameters ci associated with contractions Ti to unit size. This
fractal dimension f is equivalent to both the Hausdorff dimension and the box
counting dimension.

t=0 t=10 t=100

Figure 25.4: Iterative Feature Separation.

The last idea that we would like to present in this section is the usage of
random numbers as arbitrary descriptions. Of course, without proper improve-
ment arbitrary descriptions will hardly be able to express semantic information.



468 CHAPTER 25. SEMANTIC DESCRIPTIONS AND APPLICATIONS

However, if cleverly chosen and improved they might be reasonable media de-
scriptions. The idea of improvement is illustrated for one description element
and two semantic categories (black, gray) in Figure 25.4. If there is a small statis-
tical difference between the initially computed random numbers (here, different
mean), we can identify a learning process that moves the two classes further
apart. In the second part of the book, we encountered a number of techniques
for such discrimination: linear discriminant analysis, intelligent kernel functions,
etc. These methods and learning-based categorization methods (e.g. boosting)
can likewise be used to improve description quality.

For the initialization problem, it turned out that random step functions have
a natural ability to provide the required small differences. We suggest using the
following function for the definition of i < m description elements fij for j < n
media objects oj .

fij =
ij + 1
mn

random() (25.4)

Here, random is a function that returns a random number in the interval
[0, 1]. Independent of the class labels associated with the objects oj these arbi-
trary descriptions tend to have a topology that allows for iterative improvement.

Why should it be interesting to use arbitrary descriptions for semantic learn-
ing? There are two general advantages. Firstly, random features can be com-
puted rapidly without considering the media content, i.e. they can be computed
in advance. Their only property has to be that they discriminate in arbitrary
groupings. Quantitative examples showed that the stated random step func-
tion provides this functionality. Secondly, iterative learning moves the seman-
tics problem away from the feature extraction where it can hardly be fulfilled.
Improving cleverly chosen random numbers is often simpler and more effective
than improving redundant content-based descriptions. In the event, the choice
depends on the quality of the ground truth. For representative ground truth,
arbitrary descriptions are an option. For bad ground truth, they will fail more
spectacularly than content-based features.

In this section, we have introduced a number of very simple description meth-
ods that can be enriched semantically by intelligent application. Now, it is time
to analyze such semantic applications.

25.3 Semantics in Audio, Biosignals and Text

The two remaining sections focus on semantic implementations of the big pic-
ture. For selected application types we explain the currently best solution. Like
in the last chapter, in this section we focus on one-dimensional data while the
next section covers all visual topics. The reason is obvious. Rich semantics
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do exist in visual data: object information (signs), their relationships, motion,
etc. In comparison, fewer semantic dimensions do exist in one-dimensional data:
language in speech, motifs in music, and a few more. Furthermore, audio infor-
mation is also an important clue in video semantics. We require audio concepts
for the recognition of advanced multimodal concepts such as emotions. Hence,
we describe this data type first.

After the discussion of semantic audio applications, we introduce one example
for biosignals and one for semantic text understanding. Bioinformation and stock
data are not considered in this context, because in both cases the semantics go
hardly beyond the already discussed methods. For example, the decisive goals
of bioinformation detection were already discussed in the first part. Sequence
alignment for gene recognition is one such semantic application. Technical chart
analysis is performed in the way described in the feature extraction chapters
and uses the semantic concepts that were introduced in the last chapter. Any
further processing of this data (e.g. taxonomic conclusions, market decisions) is
out of the scope of media understanding.

Before we begin with semantic audio applications, however, we would like to
emphasize that what we call semantic here is clearly inferior to semi-automatic
media understanding, i.e. putting the human in the loop of media understanding.
The idea of semi-automatic media understanding is to leave the semantic labeling
of objects, patterns, groups, etc. to the user. For example, a visual surveillance
application that lets the user label events (e.g. as dangerous/harmless) is a semi-
automatic media understanding application. Typical applications are object
labeling in image understanding and marking of objects in motion tracking.
Recent results of international contests (e.g. TRECVID [279]) show that semi-
automatic methods perform two to ten times better than fully automatic media
understanding. That is, however semantic our applications are, they are still
clearly inferior to the human understanding of semantics.

For semantic audio understanding we would like to discuss two applications:
speech recognition and music genre classification. Speech recognition is the classic
of audio understanding. The semantics in speech and language are obvious and
of paramount importance for numerous applications. Early applications included
automatic phone answering services and speech-based computer interfaces. The
quality of automatic speech recognition has reached a very high standard –
in particular for the English and the Spanish language. After some training,
recognition rates beyond 99.5% are state-of-the-art.

Figure 25.5 illustrates the speech recognition process. It follows the big pic-
ture of media understanding. Speech recognition is a two-step process of training
and application. In the training step, MFCC descriptions (see Chapter 13) are
extracted for short windows of time (for example, 40ms). These descriptions
and ground truth data are used to train hidden Markov models: one per word.
The actual categorization process computes the MFCC values for the input sig-



470 CHAPTER 25. SEMANTIC DESCRIPTIONS AND APPLICATIONS

Media
Object

Feature
Extraction MFCCs Training HMMs

Ground
Truth

Categorization

Feature Space
Search

Class
Label

Figure 25.5: Speech Recognition Process.

nal and identifies the most likely hidden Markov model for the input sequence.
This evaluation problem is – on the micro level – typically solved by the forward
algorithm.

However, the actual problem of speech recognition lies on the macro level of
categorization. One model per word means, for example, for western languages
to evaluate 250 thousand and more hidden Markov model per MFCC sequence.
Obviously, this process requires optimization in order to be solvable in (near) real
time. Various options exist for the quick traversal of the model space (depicted
in two dimensions in Figure 25.5). One obvious approach would be indexing
by some tree structure. Another the computation of hash values for models.
This approach points in the direction of iterative media understanding. The
confusion matrices of the hidden Markov models can be employed for a further
iteration of feature extraction and categorization. The process should be opti-
mized in a way that allows quick retrieval of the most likely matches for a new
input signal. We conclude that speech recognition is a media understanding of
media understanding application that employs spectral psychoacoustic feature
transformations and Bayesian categorization methods.

Music genre classification aims at detecting the style of music for some in-
put signal. Genres include classic, pop, reggae, jazz, blues and many more. In
contrast to speech recognition, where the central problem is fast search space
traversal, the major problem of genre classification is that genres have no clear
(fuzzy) definition. In media understanding terms: the descriptions of genres
are spread over large parts of feature space and disconnected. Hence, state-of-
the-art approaches use categorization methods that produce a summary/view of
feature space: cluster analysis, multi-dimensional scaling and the self-organizing
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map are typical classifiers. Descriptions are usually extracted using autocorrela-
tion: linear predictive coding and perceptual linear prediction are typical feature
transformations. Music genre classification is still in an early stage. The diver-
sity of the genres may be seen as a semantic aspect, but as well as unintended
chaos. We believe that significant advances in this domain would require the
rigorous definition of genres first.

In the biosignal domain, one very important application is EEG-based spelling.
The idea of this application is to help people with the locked-in-syndrome to ex-
press themselves through the computer. Input stimuli are converted to letters
using EEG signals. A typical application scenario consists of the following steps.

1. A sequence of stimuli (e.g. images) is presented: one per letter. The
stimuli are presented in an endless loop at a frequency of approximately
1
4Hz.

2. The user focusses mentally on the letter/stimulus he would like to express.
If this stimulus appears, it will cause a P300 event – a strong EEG peak
300ms after the stimulus.

3. The system detects the P300 event and displays the associated letter.

The third step describes the actual media understanding application. Typical
feature transformations are short-time energy and peak detection by autocorre-
lation. Categorization is usually performed threshold-based by simple decision
rules.

Early experiments in EEG-based spelling showed that the method is highly
reliable. Test users could write at an approximate speed of eight letters per
minute for several minutes before they got tired. If the system uses a predictive
text application, this equals up to four words.

Our last example is an emerging field in text understanding: stylometry.
That is the automatic description and categorization of text documents. Ap-
plications include quality assessment and the recognition of authorship. In par-
ticular, the latter application has received increasing attention in recent years.
Stylometry is usually a straightforward implementation of the big picture of me-
dia understanding. The employed feature transformations are usually based on
text windows of 50-100 words and use averaging and peak detection methods.
One example is the counting of the average and frequency of functional words
(e.g. relative pronouns), another the counting of seldom pairs of words. The
general approach is building a word histogram over each text window, aver-
aging by statistical moments and comparing histograms by distance measures.
More advanced categorization approaches make use of neural networks and op-
timization techniques such as genetic algorithms. However, the categorization
in stylometric applications is not different from the categorization in any other
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media understanding domain. For the forensic application, the major problem
is guaranteeing reliability or, at least, giving a belief score for the stylometric
results. Since the style of most authors changes over time, it is hard to pro-
vide reliable judgments. Still, we believe that with the increasing availability
of copyrighted but easily reproducible digital text, stylometry will become an
important frontier of active text understanding research. In this endeavor, the
edit history of the Wikipedia will probably become a valuable source of ground
truth.

The introduced applications show that tailor-made applications suffer mainly
from missing or low quality ground truth and from the over-narrowing problem.
Their common advantage is their practical relevance. The presented semantic
applications are of immediate use for real people. This relevance justifies the
large research effort in these areas.

25.4 Visual Semantic Applications

The final section investigates semantic visual media understanding applications
that are of practical relevance. As already stated, numerous semantic concepts
are based on the visual sense. The importance of semiotics – the endeavor to
develop a language-like symbol system for vision – supports this view. Among
the many concepts that are perceived visually, the human face has arguably the
highest rank. Cognitive scientists could already discover various neural trails
that are activated whenever a human face appears in the visual field. Therefore,
we start our investigation with the state-of-the-art in human face recognition.
Then, we investigate two applications that are multimodal (audio and vision)
but where the visual sense is usually judged prevalent. The first deals with a re-
lational topic: scene grouping in film. The second deals with emotion recognition
from video material.

Figure 25.6 sketches the flow in the face recognition approach developed by
Viola and Jones [383] that may be considered (at least close to) the state-of-the-
art in this active research direction. Obviously, face recognition is an important
functionality in many media understanding applications. If man is the measure,
his face must necessarily be highly relevant. That is equally the case in film
analysis as in video surveillance, biometry, content-based image retrieval and
other areas.

The Viola-Jones approach is distinguished by its descriptions and the opti-
mization of the categorization approach. The entire process is based on so-called
two-, three-, and four-rectangles. Figure 25.7 shows examples. The upper left
two-rectangle is computed by summing the brightness values in the white area
and subtracting the brightness sum in the gray area from this value. Three-
and four-rectangles are computed analogously. These rectangle descriptions are
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Figure 25.6: Viola Jones Face Recognition Process.

employed for categorization. Three aspects of this approach are noteworthy.

1. The set of description elements is over-complete. That is, the computed
description is bigger than the matrix of luminance values if each pixel is
considered a region (that is the case in the Viola Jones approach). Hence,
there is no information filtering in the feature extraction step, rather the
opposite.

2. The computation of the rectangle features is not as resource-consuming as
it appears on first sight. The right part of Figure 25.7 shows four so-called
integral images. The authors of [383] define an integral image as the sum

a b

c d

Two-, Three-, Four-Rectangle Features Integral Image

Figure 25.7: Rectangle Features based on Integral Images.
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of brightness values in the rectangular region from the upper left corner to
any other point. Computing all integral images of an input media object
in advance, allows to compute rectangle features quickly by checkers-style
addition and subtraction of regions.

3. Rectangle features come very close to arbitrary descriptions. The influence
of one brightness value on a number of description elements is – compared
to other feature transformations – very big. Therefore, the noise in the
input signal is even amplified. The result is a large feature space in which
most description elements are junk but some are – hopefully – highly ex-
pressive.

The task of the classifier is to identify the expressive description elements.
It is, therefore, not surprising that Viola and Jones suggest the AdaBoost algo-
rithm, which is indeed able to identify such description elements quickly and to
employ them in simple yet effective decision rules. AdaBoost is used in a meta-
process for face recognition. The attentional cascade stands for a processing
queue in which first a coarse classifier uses coarse two-rectangle descriptions to
sort out the majority of false positives, a second classifier works on a finer level
(three-rectangles) and the last on four-rectangles. Eventually, a hit for some
input face image is identified – hopefully without eliminating the best match in
earlier processing steps.

The Viola-Jones approach is highly effective. Following the idea of struc-
tural risk minimization, it does not only optimize classification performance
(minimization of losses) but at the same time the computational performance.
Both the feature extraction procedure and the categorization algorithm are well-
suited for algorithmic optimization. The danger of overfitting in the classifier
is reduced by the extremely large feature space that introduces a – desired –
hardly handleable degree of variance in the feature selection process.

Figure 25.8: Scene Grouping Example.

Scene classification is a central problem of film analysis. The goal is to break
up the final cut of a movie, cluster the scenes into shots with the same content,
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background and camera parameters and to sequence the scenes in each cluster
by their content. Figure 25.8 illustrates this idea. The movie in the top row
consists of three threads, for example, someone counting, astronauts in a space
ship chatting and the ignition of a space rocket’s engine. Scene classification
detects the shot boundaries and reorders them by content. The resulting film
can be used to investigate aesthetics, semiotic and other clues.

The state-of-the-art in scene classification is to use both audio and visual
information to detect shot boundaries in the first step. The temporal segmenta-
tion methods introduced in the second part of the book have a hit rate of 99%
and more. In the second step, scenes have to be sequenced. For that, descrip-
tions are extracted from the regions next to the boundaries. By crosscorrelation
of descriptions of each begin region and all end regions, the most likely matches
are identified. Eventually, scenes are sorted by these likelihoods. Descriptions
used in this process are color descriptions and local interest points.

The last semantic application that we would like to discuss here is emotion
recognition from audiovisual content. Emotions are central in many surveillance
decision problems and other visual media understanding domains. In video
surveillance, it makes a big difference if one person approaching another person
shows a smiling face or an angry face. Generally, the visual channel is of higher
importance in emotion recognition. However, the auditory information must not
be neglected.

Cheek Raiser (6)
Lip Corner Puller (12)

Happiness = 6 + 12

Figure 25.9: What is Happiness?

In the visual domain, again, facial expressions are of highest significance for
emotion recognition. Hence, face detection and face recognition are necessary
first steps. Then, the facial expression has to be recognized. For that, Ekman has
developed the so-called facial action coding system (FACS), a standardized set of
expressions and a codification of the muscular movement required to form each
expression (so-called action units). Figure 25.9 shows an example for happiness
– the simplest facial expression in the FACS. Happiness is distinguished by raised
cheeks and raised lip corners. The FACS distinguishes around 50 action units,
different types of head movement, eye movement and gross behavior such as
chewing and speech.

The FACS is an ideal foundation for future vision-based emotion recognition.
Today, media understanding is not yet able to recognize the action units from
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Figure 25.10: Emotion Recognition by Valence and Arousal ( c© CNBC ).

motion information correctly. If that was possible, FACS would probably be a
reliable system for facially expressed emotions. Meanwhile, emotion recognition
is usually based on a dimensional approach, in which emotions are described
by their valence (positive or negative) and the level of arousal. Figure 25.10
shows two examples. Happiness, sadness, anger and many other emotions can
be uniquely positioned in this description space.

The media understanding problem in this approach is the transformation of
the input media object to the description space. This problem can be solved
by an iterative media understanding process. In the first step, state-of-the-art
low-level descriptions are extracted. Practically, audio feature transformations
such as short-time energy, pitch, MFCC and the logarithmic attack time have
proven to be successful description methods. In the visual domain, face moments
and those rectangle features that are used for boosting in the Viola-Jones ap-
proach have been successful. In the second step, a classifier is used to compute
valence and arousal based on given ground truth and all description elements.
Here, the k-nearest neighbor approach has proven sufficient for representative
ground truth. Eventually, emotions can be derived from valence and arousal by
probabilistic inference. So far, the state-of-the-art in emotion recognition has
hardly left the diagonal of arbitrariness of the ROC chart. However, this is an
active frontier of media understanding research and we are positive that the near
future will see significant advance in this field. In particular, making effective
use of the FACS would lead to a major step forward in emotion recognition.

The conclusion of this chapter is that semantic applications are an important
frontier of media understanding, because eventually, users require applications
that work. An application is semantic if it is neither too primitive nor to clever.
We introduced the terms subsemantic and supersemantic to denote these two
insufficiencies. In particular the second one has been widely neglected in the
past. Semantic applications reduce the semantic gap, no surprise, and also the
level of polysemy by focussing on the context of the user. The drawbacks of
these often iterative methods are high dimensionality of the feature space and
generally high resource consumption. The major problem of the domain is over-
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narrowing: the tendency to build applications for a domain too limited to be
relevant in practice.

The last two chapters, template matching and semantic applications, were
dedicated to practical problems of media understanding, mostly associated with
the description step of the big picture. In the next two chapters, we return to
more theoretical problems – though important applications do exist: dynamic
filtering and the frontiers of learning. As in the first two parts, by these chapters
we make the transition from media description to categorization.





Chapter 26

Convergent Filtering

Develops a model of convergence for iterative filtering processes, discusses learn-
ing vector quantization, the Kalman filter for scalar quantization and quantiza-
tion by associative memories such as the Hopfield network and the Boltzmann
machine.

26.1 Models of Convergence

This chapter and the next are dedicated to dynamic processes. In this chap-
ter we focus on information filtering and introduce methods that provide data
quantization by convergence over time. In the next chapter, we investigate the
behavior of classifiers over time, that is, their dynamic learning and application
behavior. Of the four sections of this chapter, the first deals with theoretic as-
pects of dynamic filtering: forms of convergence, limits of the filtering process
and similarities to related processes, in particular, optimization. The remaining
sections introduces concrete models for convergent filtering. The second section
discusses vector quantization as a form of convergence towards a given limit.
Section 26.3 introduces the Kalman filter as a near-optimal solution for con-
vergent filtering under uncertainty. Eventually, we introduce two pseudo-neural
processes: the Hopfield network and the Boltzmann machine, that extract scalar
quantization from the topology of the input data space.

Convergent filtering is a true frontier of media understanding research. Some
methods, such as the Kalman filter, are well-established for some applications
(e.g. point tracking) but neglected in others (e.g. computation of informative
moments). Other methods are hardly used today, even though a number of

479
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interesting applications would exist. The goal of this chapter is to introduce
and compare important converging filtering methods. We would like to make
the reader aware that, here, a class of algorithms exists that have common at-
tributes and several potentials for application. We are positive that the existing
approaches could be used beneficially in media understanding and that further
convergent filtering approaches that combine features of the existing ones would
be interesting to have.

In this section, we focus on the ingredients of the convergent filtering model.
Dynamical aspects are – where possible – referred to the next chapter. First,
we introduce the general principle of convergence in the form of the cybernetic
stability criterion. Then, we discuss several operationalizations, i.e. convergence
curves, and their parameters. Eventually, we discuss the convergence process in
theory and practice. As we will see, it is a dynamic process with all typical
features. The section closes with a brief discussion of the common aspects of
quantization and optimization.

Quantization is the central term in this chapter. The feature extraction
chapters and, in particular, the analysis of the building blocks of feature trans-
formation showed that quantization steps occur in all relevant description meth-
ods. Often, quantization introduces essential world knowledge and provides the
foundation for expressive descriptions. Convergent filtering aims at the summa-
rization of input data – over time – in stable descriptions. Hence, convergent
filtering can be seen as a form of quantization.

Temporal processes are highly interesting for quantization. Improvement
over time allows to approach the optimal value for given data in a trial and
error manner, to make use of belief scores and to escape local optima. The
risk of temporal filtering, however, is that the approximation process begins to
oscillate or even to show chaotic behavior. Obviously, for quantization such
behavior has to be avoided. We require a stability criterion for the dynamic
filtering process. Cybernetics, the theory of dynamic feedback systems, provides
such a criterion in the following form. For a feedback process F (t) given in the
form of a differential equation f ′(t) = F (t, f(t)) the solution x(t) is stable if the
following condition holds

∣∣f(0)− x(0)
∣∣ < ε0 ∧

∣∣f(t)− x(t)
∣∣ < εt (26.1)

Here, 0 < εt+1 < εt are limits that enforce the convergence over time t <
∞. Please note the similarity of the stability criterion with the contraction
condition of iterated function systems (last chapter). The idea is the same:
iterated function systems have to be convergent processes. A process is said to
be asymptotically stable if the stability criterion holds as well as the following
condition.
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lim
t→∞

∣∣f(t)− x(t)
∣∣ = 0 (26.2)

That is, the output of the process is normalized to a time average (here,
simply the mean) of zero.

One-Sided Negexp Two-Sided Negexp Logistic S Curve

Time

Figure 26.1: Convergence Curves.

Figure 26.1 shows typical convergence curves that fulfill the stability crite-
rion. It has to be remarked that since a dynamic process that is controlled by
feedback must necessarily oscillate, a true convergence curve would have to have
high-frequency components. However, we are not interested in the local behavior
of the curves here, therefore, we focus on the convex hull of practical conver-
gence curves. The leftmost curve shows a typical one-sided negative exponential
curve. The filtering process that implements this behavior is highly efficient.
After relatively short time (a high rate of convergence) it provides already a fair
estimate of the result. The two-sided negative exponential curve approaches the
point of stability from both sides, hence, having higher oscillation and smaller
belief in the first iterations. This is arguably the most typical convergence pro-
cess. For example, the Kalman filter follows this characteristic. The efficiency
of the process depends on the degree of over-linearity of the curve.

The rightmost element of the figure shows the most common sigmoid curve,
the logistic S curve. This curve is often used to describe learning processes that
consist of an initial stage (exponential growth) and a saturation stage in which
the domain is mostly processed (learning is complete). The curve is defined as
follows.

f(t) =
1

1 + e−t
(26.3)

The logistic convergence criterion will usually be one-sided. The upper limit
is given by the size of the set/space on which the underlying process operates
(e.g. a feature space). A practical example of a filtering process that will follow
the logistic S curve is learning vector quantization, discussed in the next section.
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Remark: Time is the essential parameter of convergence curves. The treat-
ment of time is an important aspect of dynamic filtering processes. Most pro-
cesses use a discrete time model in which the system changes as a whole from
step to step. Within one step, all data are held constant. This model is, for
example, employed in the Kalman filter and in associative memories. Learning
vector quantization may be seen as an exception as it handles only one input
value and, hence, only a small fraction of the model in one time step. In Chapter
29 we ill introduce dynamic models that work with continuous time and do not
hold the model constant.

Expectation

Maximization

Guessed
Model

Refined
Model

Compensator Actor

a) b) c) d) e) f)

Figure 26.2: Convergent Filtering Model and Example.

Convergent filtering is a dynamic process, we said. Hence, the filtering model
will be derived from the general model of dynamical systems. Figure 26.2 pro-
vides an example in the form of the standard feedback system. Since dynamical
systems require control by feedback, we consider this model a fair choice for
the convergent filtering model. Below the feedback model, the figure shows
the expectation maximization approach as one example for a dynamic filtering
process. Following the two-sided negative exponential convergence curve, expec-
tation maximization usually has a high rate of convergence. For example, the
Kalman filter uses an expectation maximization process. The gray lines connect
components of the theoretical model with components of the practical example.
As we can see, every element of the implementation exists also in the model and
vice versa. This underlines the fact that the feedback model is a good choice
for the general convergence filtering model. It consists of the elements listed in
Table 26.1.

The actor provides the actual estimate. The estimation process is based
on the model (e.g. a form of belief), which is provided and maintained by
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Element Name Type Example
a Feedback Data Estimate
b Integrator Process Add Operator
c Compensator Process Density Estimation
d Actor Process Extrapolation
e Model Data Probabilistic Density
f Output Data Final Estimate

Table 26.1: Elements of the Convergent Filtering Model.

the compensator. The work of the compensator is based on past estimates
(feedback), integrated by some add function. The final output is the stable
result. The duration of the filtering process is primarily determined by the
behavior of the compensator. The better the model, the higher the rate of
convergence. The characteristics of the convergence curve are determined by
the actor, since this component makes use of the model and produces the actual
estimate.

We would like to close this section with a brief discussion of the communal-
ities and differences of quantization and optimization. Above, we argued that
quantization over time is a dynamic process that has to converge towards some
stable point. The same description can be given for optimization processes, only
that we require the stable point additionally to be the best with respect to a
given goal. Please note that this is not expected from a quantization process.
We will hardly ever have an understanding of optimality in quantization.

a) a)

b)

Figure 26.3: Optimization (a) and Quantization (b).

Figure 26.3 illustrates the communalities and differences of quantization and
optimization processes. Both processes have in common that they search for a
point representation of a given space. The space will in both cases be non-linear.
Hence, the search problem will not be trivial. In the example, the optimization
process will search for the minimum of the curve. This can be approached by
linear search, hill climbing or one of the algorithms introduced in the second
part of the book. Eventually, the optimization algorithm should end up at the
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minimum. In contrast, the quantization process will chose its representation not
only from the given data but also from constraints in the model. For example, it
will not allow the selection process to exceed beyond a pre-defined limit. Hence,
quantization can be seen as a form of local optimization in which global aspects
of the input data are only considered in so far as every component (often, of fixed
size) of the global signal is represented by one local quantization. If optimization
is as flexible as a worker, quantization is like a crane.

In summary, in this chapter we try to solve the information filtering problem
(in particular, quantization) by dynamic processes. In order to be useful, these
processes have to be stable in the sense that they follow a reasonable convergence
curve. The essential building blocks of the dynamic filtering model are the same
as in general feedback systems. The central element is the model data, often,
a probability distribution/set of belief scores. The filtering process employs the
model for improving an initial estimate until it reaches a stable point. In the
three remaining sections of this chapter we will see that these building blocks can
be used to categorize components of practically relevant algorithms successfully.

26.2 Vector Quantization

Quantization is ubiquitous in media understanding. The central idea of quan-
tization is the coarse representation of input values, or, to provide a mapping
from a larger set onto a smaller set that preserves the relationships of the origi-
nal data. A typical quantization function is rounding. In the feature extraction
chapters, we have seen that quantization is of highest significance. It is used, for
example, for psychophysical modeling (often, the logarithm) or for normaliza-
tion (e.g. in interest point descriptions). This section focusses on a particular
form of quantization: vector quantization by iterative processes. The central
algorithm is learning vector quantization. In addition, we take the opportunity
to introduce a few relevant terms in the context of quantization and to review
others that were introduced earlier.

Generally, two types of quantization methods can be differentiated: scalar
quantization and vector quantization. The first method tries to optimize the
representation of one value while the other performs quantization for entire data
sets. The rounding function mentioned above is a typical scalar quantization
method. The k-means algorithm is a vector quantization method. Both ap-
proaches have in common that they map many values onto few – often, uncount-
able many to countable few. A major difference is that the rounding function
does not require external data (e.g. world information): rounding can be per-
formed without an understanding of the output space. In contrast, the k-means
algorithm requires references that define the topology of the output space. This
differentiation of quantization methods is crucial for their understanding. Some
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methods are goal-centered while others are self-centered. In the first case, the
quantization result can be controlled by parameters, in the second case not (or,
hardly). Methods that cannot do without external information are, for exam-
ple, the psychophysical transforms already mentioned and ground truth-based
methods.

Step Size

Figure 26.4: Granularity of Quantization.

The effect of quantization can be measured by two indicators.

• Granularity

• Quantization error

Granularity, as shown in Figure 26.4, is an indicator only for self-centered
methods, for goal-centered methods it is a parameter, then often referred to as
step size (e.g. the step size in audio feature transformations). The quantization
error was already introduced in Chapter 19. Generally, it measures the rounding
error of the quantization function.

q =
∑
i

|f̄i − fi| (26.4)

As the formula shows, the quantization error is simply the city block dis-
tance from the output f̄ to the input f of quantization. Hence, this measure
is applicable to self-centered and to goal-centered quantization algorithms. Of
course, in the latter case the quantization error will be influenced strongly by
the layout of the references.

Classification Reconstruction

Figure 26.5: Quantization is a Two-Step Process.



486 CHAPTER 26. CONVERGENT FILTERING

Furthermore, quantization methods are often segmented into two steps.

1. Classification

2. Reconstruction

Figure 26.5 shows an example. In the classification step, the input signal is
reduced to a few points that express the characteristics of interest. In the figure,
the bell curve (input) is quantized to a few points (gray). In goal-centered meth-
ods, the orientation points of classification are given. For self-centered methods,
they are usually distributed according to some distribution (e.g. uniformly).
The reconstruction step extends the relevance of the orientation points onto the
entire input space. The result is a coarse representation of the original input
signal. The amount of coarseness is determined by the degree of violation of the
Nyquist law. The level of coarseness can be expressed by the quantization error.

The k-means algorithm is a good example for the classification-reconstruction
scheme. In the classification step, input vectors are associated with their nearest
references. In the reconstruction step, a Voronoi tessellation is computed from
the reference vectors. The result is a quantization scheme for vectors that spans
over the entire feature space.

Vector quantization differs in one essential point from scalar quantization:
The amount of quantization varies between vector elements. The global quan-
tization is determined by some similarity or distance measure. Every vector
element contributes to the global quantization but the amount of contribution
depends on the distribution of the values of the elements. For example, a con-
stant vector element will contribute little to coarse representation. A highly
variable element will contribute strongly. The general strategy of vector quanti-
zation is the same as competitive learning in neural network theory: the winner
takes it all. Vector quantization is generally goal-centered, i.e. the desired topol-
ogy has to be given in the form of references. Then, for each input vector the
winning node is detected as the most similar reference. Like for k-means and the
self-organizing map, Minkowski distances are the preferred (inverse) similarity
measures. Optionally, the winning node is moved a little bit in the direction of
the input vector. The little bit is determined by a learning rate. Hence, compet-
itive learning has two determining parameters: the references and the learning
rate.

The most important implementation of vector quantization for media under-
standing is the learning vector quantization algorithm proposed by Kohonen. It
implements exactly the competitive learning algorithm (see Figure 26.6). The
resulting references (codebook vectors) are used instead of the input data as
quantized representatives. Hence, this algorithm is highly similar to k-means
categorization and the self-organizing map (SOM). Compared to the first, it
adds a learning step that adapts the references (i.e. an integrator and feedback).
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Figure 26.6: Learning Vector Quantization Principle.

Unlike the SOM, learning vector quantization does not consider the neighbor-
hood of the winning node. Only this reference is adapted, not the others. The
algorithm is therefore somewhere between k-means and SOM. The resulting cat-
egorization is less smooth than a SOM categorization. This may be the reason
why the SOM is considered a classifier and learning vector quantization is seen
as a vector quantization function.

Learning vector quantization is a highly flexible method. Convergence fol-
lows the one-sided negative exponential model. That is, the initial direction of
learning is pursued until the optimum is reached. The learning process allows
to correct badly chosen references. It is therefore usable for text quantization
(e.g. normalization of n-grams) as it is applicable for improving the discrimina-
tion ability of audio descriptions for music genre classification. The important
aspect of vector quantization is that it is data-driven. The implementing al-
gorithms employ the references as their model and transform the input data
accordingly. The trust in the model is beyond question. In the next section, we
introduce a filter that takes the uncertainty of the model into account.

26.3 The Kalman Filter

The Kalman filter [184] is the state-of-the-art in the estimation of the state
of a noisy and/or uncertain process. In this section, we introduce a practical
form of the Kalman filter that can be employed for convergent filtering. In
the description, we avoid going to deep into the theory of the filter. Rather,
we present practical media understanding applications for Kalman filtering. In
fact, the Kalman filter is a convergent filter par excellence. First, we introduce
the model of the process that is being approximated by the filter. Then, we
discuss the convergent filtering process and the model of the filter. Eventually,
we sketch a few practical applications.

The Kalman filter describes a noisy process of the following form.
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xt = F (xt−1) +N(0, σn) (26.5)

The output xt at time t is produced by a process F that is based on the
last state. The Gaussian noise component N(0, σn) influences every iteration of
the process differently. This process is very similar to a Markov process of first
order. In fact, the Kalman filter can be used to approximate the parameters of a
Markov process. Moreover, the entire Kalman filtering process is isomorph to the
expectation maximization algorithm typically employed to model the confusion
matrices of Markov processes. In the second part, we mentioned that Gaussian
mixture models are frequently used for initializing hidden Markov models. This
is an application example of this process.

Expectation:
Measurement

Update

Belief:
Variance

Maximization:
Time Update

Estimate

Figure 26.7: Kalman Filtering Process.

The Kalman filtering process is illustrated in Figure 26.7. The two steps of
the process are iterated over time. In the expectation step, the measurement
is updated, i.e. the model that is used to estimate the output of the filter is
adapted by the most recent measurement. In the maximization step, the refined
filtering model is used to adjust the estimate of the process F . Since the process
output is determined temporally, this is called the time update.

More precisely, the initialization of the filtering process is performed as fol-
lows.

f0 = x0 (26.6)
f1 = µ(f0, x1) (26.7)

That is, the process estimate f1 at time 1 is just the mean of the first two
measurements x{0,1}. Based on this initialization, the first measurement update
is performed as follows.
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bt =
σt−1

σt + σt− 1
(26.8)

Here, bt is the belief in the measurement at time t. If the standard deviation
of the data stream generated by the process is increased by measurement xt,
then the belief term moves towards zero. If the standard deviation becomes
smaller, the belief moves towards one (trust). Formally:

σt → max⇒ bt → 0 (26.9)
σt → 0⇒ bt → 1 (26.10)

The belief bt is the model of this simple form of the Kalman filter. It is used
in the time update in the following way.

ft = ft−1 + bt
(
xt − ft−1

)
(26.11)

The new estimate depends on the old estimate (output), the belief in the
measurement (feedback, compensator) and the difference of the new measure-
ment and the old estimate (integrator). The latter term is the time update. A
large time update means that the old estimate did not predict the next output
well. Hence, the belief in the model will fall. If the time update is small, the
belief in the model will rise. In consequence, the product of belief model and
time update will be maximal for medium time updates. Only such updates will
make the new estimate significantly different from the old one. If we denote the
time update as T = xt − ft−1, we can write this relationship as follows.

σt → max⇒ bt → 0 ∧ T → max⇒ btT → 0 (26.12)
σt → 0⇒ bt → 1 ∧ T → 0⇒ btT → 0 (26.13)

For high variances in the output of process F we trust in the estimate. For
low variances there is no need to refine the estimate. The power of the Kalman
filter lies in medium-sized changes of the measurements. Then, it computes an
estimate that predicts the output well and eliminates the noise component.

Before we discuss media understanding applications of the Kalman filter we
would like to compare it to statistical moments and interestingness measures. If
we ignore the temporal aspect of the approximated process – which is anyway
always the case in media understanding applications – the Kalman filter can be
interpreted as an algorithm that computes a first-order moment of the input data
in a similar fashion as the mean shift algorithm. Hence, it appears reasonable to
investigate whether or not the Kalman estimate is correlated to mean, median
or interestingness measures such as information entropy. We investigated theses
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measures for random data sets (uniformly distributed and normally distributed).
Quantitative analysis did not show any significant correlations between these mo-
ments. In detail, the only similarity that could be identified was between entropy
and variance, which underlines the characteristics of interestingness measures as
moments of second order. Among the moments of first order, it was astonishing
to see that – even for short random sequences – the mean is significantly differ-
ent from the Kalman estimate. Therefore, we consider it advisable to use both
procedures to approximate data in media descriptions and select the better one
by ground truth-based evaluation or factor analysis.

A second point of interest is the influence of the order of the input data on
the Kalman estimate. Generally, the filter shows two-sided convergence with the
characteristics of the negative exponential curve. Quantitative analysis showed
that the effect of reordering depends on the variance in the data. If variances
are generally small, reordering has hardly an effect on the Kalman estimate.
If variances are high, nonsurprisingly, the estimates become significantly differ-
ent. We conclude that the applicability of the Kalman filter for quantization in
media understanding depends on the degree of variation in the media objects
and descriptions. If the number of degrees of freedom and their scale is limited,
Kalman filtering may be an interesting alternative to mean filtering.

Input Data Average Description

Figure 26.8: Kalmanface Example ( c© CNBC ).

One such application is illustrated in Figure 26.8. We employed the Kalman
filter successfully for face averaging in the context of face recognition. The ap-
proach is intended as a preprocessing step. It takes the n input images (left part
of the figure), normalizes them to the same size and – if necessary – shifts the
center (e.g. to the nose tip) and rotates the view. Then, an average face image is
computed by Kalman filtering for each sample location. The resulting face esti-
mate (a so-called Kalmanface) is illustrated in the center element of Figure 26.8.
The Kalmanface is a mixture of the original face information and the belief in the
various features. The statistical properties of the Kalmanface are significantly
different than of the mean image. The overall entropy is higher. Eventually, the
Kalmanface can be converted into a description by coarse representation (quan-
tization) and, for example, a zigzag scan. The resulting description can be used
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for face recognition directly or as input for some meta-algorithm.
Typical applications of the Kalman filter include smoothing of tracking data,

forms of regression and extrapolation. Hence, the filter is tailor-made for the
analysis of stock data. Surprisingly, it is hardly employed in this domain. One
interesting application would be the averaging of stock data segments, for which
a sliding average is frequently used. Another application would be the prediction
of the missing part of a chart (e.g. a cup with holder) based on earlier measure-
ments. Eventually, in the audio domain, the Kalman filter could be used for the
estimation of short-time energy – similar to the mean, etc.

In summary, the Kalman filter estimates (temporal) processes. It computes
an optimal estimate under uncertainty, for example, introduced by noise. Appli-
cations include information filtering but as well quantization in feature transfor-
mations and categorization algorithms. The Kalman filter is due to its simplicity
and the intelligent combination of belief and empirical measurements of highest
practical importance. In media understanding, it can be used on descriptions
and directly on the media data.

26.4 Associative Memories

In the final section of this chapter we move from belief-based filtering on to
temporal feedback models. Associative memories are often modeled as neural
networks. Like the human cognitive system, associative memories search for
a stable state, i.e. a conflict-free system. The optimization of the individual
neuron (for example, standing for one scalar value) is influenced by all other
values and influences the optimization of all other values. Associative memories
are used for vector quantization.

But associative memories achieve more. The central ability expressed by
the adjective associative (or, auto-associative) is to retrieve one part of a data
vector on the presentation of another part. The two models discussed in this
section, the Hopfield network and the Boltzmann machine are both capable of
auto-association. Auto-association is an important ability in text retrieval. It
can, for example, help to solve the co-reference problem (for example, replacing
the subjective by a personal pronoun).

Remark: Learning vector quantization – in fact, every form of vector quan-
tization – will also be able to show associative behavior, if an appropriate dis-
tance/similarity measure is chosen for the selection of the winning node. For
example, the application of predicate-based measures such as the Hamming dis-
tance (P3 in Appendix B.2) on binary vectors creates a vector quantization
method that shows significant similarities to a Hopfield network.

In the remainder of this section we describe the Hopfield network first, then
the Boltzmann machine and, eventually, we discuss applications of both. As we
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will see, both approaches share a large number of system properties.

s1 s2 s3 s4 s5

w15 = w51

Figure 26.9: Hopfield Network Architecture.

Figure 26.9 shows the design of the Hopfield network. The layout is isomorph
to a Markov process of first order. That is, every state si is connected to all
other states. The connections are weighted – the Hopfield network is a neural
network –, and the weights are symmetric. That is, wij = wji for the connection
of states si, sj . Every state si ∈ {−1, 1}, hence the state vector is a binary vector
(−1 standing for zero). Such a network is frequently called a recurrent network.

The firing rule of the Hopfield network is the same as the one of the standard
McCulloch-Pitts neuron. The state of the receiving neuron is determined as
follows.

si = sgn
(∑
j 6=i

wijsj − ε
)

(26.14)

Here, ε is the firing threshold of state/neuron si. The actual application is
performed in the following steps.

1. Set all states to the values of the elements of the binary input vector
(Element f of Table 26.1).

2. Compute the new value for each state according to the firing rule. It is
important to note that the Hopfield network uses a pulsed time model.
Every new state is computed from the entire old state vector (Elements b,
e of the table).

3. Update all states simultaneously (Elements c, d of the table).

4. If the difference between the old state vector and the new one exceeds a
predefined threshold, return to the second step (Element a of the table).

The Hopfield network is a pulsed iterative process that computes the stable
equivalent for each input vector. If the input vector is only given partially, the
missing values are (partially) reconstructed. The application algorithm has two-
sided negative exponential convergence characteristics. Convergence is reached
quickly. The number of necessary steps rises with the number of states.
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The initialization procedure of the Hopfield network employs the principle
of the generalized Hebb rule. After the number of states has been defined (e.g.
by the dimensionality of a feature space) the weights of connections are set as
follow.

wij = wji =
1
n

n∑
x=1

fixfjx (26.15)

Interestingly, there is no learning involved in the initialization. The x < n
training vectors fix with states/elements iterator i are employed in the form
of the outer product. Hence, the weight of a connection is determined by the
average perfect similarity of the involved states/description elements. Redun-
dant description elements will have high weights while variant/descriminative
elements will receive low weights. The Hopfield network may therefore justly be
called a quantization method. It reduces the discrimination power of the input
data.

D

N

2
1

9

2

48

6

Figure 26.10: Hopfield Network Capacity.

The configuration of a Hopfield network can be expressed by two indicators.
The average weight is just the mean over all connection weights. This indicator
expresses if the network converges quickly (high value) or slowly (low value).
The capacity N of a Hopfield network with D states is approximated by the
following relation.

N <
D

2 logD
(26.16)

In 99% of all cases the number of patterns (codebook vectors) that can be
remembered by the Hopfield network will not exceed N . Some examples from
Figure 26.10: For two patterns we require nine states, for six patterns ∼ 48
states. For higher values, the curve is approximately linear.
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In summary, the Hopfield network implements a form of gradient ascent to-
wards attractors that summarize the input patterns. Training is straightforward
and quick. The fundamental problem of this network is the dependency on the
training data. The initialization step leaves no room for the correction of outliers
and noise.

P (si) = 1

1+e−
δi
a

δi
a

Figure 26.11: Boltzmann Cooling Scheme.

The Boltzmann machine is in idea, design an application very similar to the
Hopfield network. The major differences are:

• States are defined as {0, 1}.

• Some connections do not exist, i.e. wij = wji = 0.

• Not all states are adapted in each iteration of the application process.

• Training is based on an iterative learning process.

The latter two differences require detailed explanation. In the application
process, states (and the weights connected to them) are selected stochastically
for adaptation. The probability of selection of one particular state is defined as
follows.

P (si) =
1

1 + e−
δi
a

(26.17)

Figure 26.11 illustrates the characteristics of this function. The parameter
δi is the firing state of the neuron. Like for the Hopfield network it is defined in
analogy to the standard neuron.

δi =
∑
j 6=i

wijsj − ε (26.18)

The probability of selection increases with a and decreases with δ. States are
selected by maximum likelihood. A Boltzmann machine that selects only the
most probable state in one iteration is called sequential, any other form parallel.
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The parameter a stands – like in simulated annealing – for the temperature of
the application process. The higher a, the more frequently states are adapted.
Lowering a freezes the solution represented by the state vector (thermal equi-
librium). The states of a Boltzmann machine behave like the particles of the
Boltzmann distribution – hence the name.

The Boltzmann machine employs an iterative learning algorithm that is sim-
ilar to cross validation. Initially, all weights are set to zero. Then, the following
scheme is executed.

1. Select a subset of all training vectors (e.g. one) and apply them sequentially
on the network. In this process, collect statistics about the activation of
the weights.

P (wij) =
Number of times si = 1 ∧ sj = 1

Number of times sx = 1
(26.19)

Here, sx stands for any state in the network.

2. Select a random training vector and compute the same statistics during
the application process: P̄ (wij).

3. Adjust the weights of all connections by the following rule.

w̄ij = wij + a(P̄ (wij)− P (wij)) (26.20)

The new weights w̄ij are influenced by the learning rate a and the precision
of the individual application process.

4. Return to the first step until the difference of new and old weights is below
a predefined threshold.

The learning algorithm of the Boltzmann machine creates an exponential
training effort. Training and application are characterized by two-sided nega-
tive exponential convergence. The benefit of the learning algorithm is that the
Boltzmann machine is more likely to identify a global optimum than the Hopfield
network. However, practically every non-trivial Boltzmann machine will not ter-
minate in reasonable time. Boltzmann machines are therefore only of theoretical
use while Hopfield networks are heavily employed for vector quantization and
data association.

In this chapter, we have presented a number of algorithms for convergent
filtering, mostly quantization, of data vectors. In the domain of scalar quan-
tization, the Kalman filter is of highest significance. For vector quantization,
learning vector quantization and Hopfield networks can be used. Both methods
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have the characteristics of associative memories. In the first case, the resulting
quantization will depend on the chosen similarity measure. The solution of the
Hopfield network depends on the training data. In general, convergent filters
have a positive influence on the dimensionality problem of media understand-
ing. Despite the filtering effort, the effect on system performance will mostly
be positive. Some of the methods are tailor-made for the elimination of noise
components. On the other hand, there is a tendency that media semantics will
be destroyed by such methods. In conclusion, the selection/definition of a one-
fits-all filter for media understanding is a true research frontier. It is generally
advisable to use the Kalman filter on scalars in situations of uncertainty. Vec-
tor quantization is of use wherever the media understanding problem needs to
be simplified without taking the risk of destroying the relationships between
description elements.

This chapter introduced methods for filtering over time. In the next chapter
we move to learning over time. We review the limits of learning, of particular
learning algorithms, and we try to estimate the risks hidden in dynamic learning
algorithms.



Chapter 27

Frontiers of Learning
Machines

Reviews communalities of categorization methods, presents a system of learning
bounds, introduces fundamental methods of dynamical systems and applies these
methods on dynamic classifiers.

27.1 Analysis of Categorization Methods

This chapter gathers a handful of advanced topics on machine learning. The
major theme is the investigation of the behavior of classifiers over time. For
this purpose, we introduce some tools from dynamical systems theory and chaos
theory. These are applied on dynamic categorization methods in order to identify
potential inconsistencies in their behavior. This chapter is related to the previous
one. There, we investigated convergence in selected filtering methods all of which
are related to categorization methods. In this chapter, we investigate oscillation
and – if existent – strange attractors, i.e. the opposite of convergence. Where
appropriate, we refer back to the theory presented in the previous chapter.

This first section serves as an introduction. We pick up the thread of Chapter
11 and investigate communalities and differences of the introduced categorization
methods. The second section deals with the limits of categorization. We review
the major theories in this area and discuss the current state of affairs at this
frontier of machine learning. The last two sections focus on the central topic:
dynamical systems theory and its application on potentially interesting dynamic
classifiers. We will see that a number of classifiers show oscillating behavior and

497
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some are for specific configurations even suspiciously close to chaotic behavior.
We consider the issues discussed in this chapter a true frontier of media

understanding. Categorization is the crucial conversion step from media sum-
maries to semantic categories. In this respect, oscillation and chaotic behavior
cannot be ignored. For example, the common practice to abort the classifier
training process if it does not converge in acceptable time and simply restart
it (e.g. training for Gaussian mixture models) is not a sufficient treatment of
what is going on in the training process. We require an understanding of what
happens in these dynamic processes in order to make sure that the fundamental
intentions of categorization remain preserved.

In the remainder of this section we review the already introduced classifiers.
We compare them by the complexity of their models, their training processes
and their micro processes. Alongside, we summarize the typical micro processes
implemented in the individual classifiers. The knowledge compiled and acquired
in this section will provide a sound basis for the advanced concepts discussed in
the three following sections.

In Chapter 11, we identified four building blocks of categorization: quantiza-
tion, similarity judgment, model estimation and learning/refinement. The last
two describe the training process and, sometimes, the application process. The
first two are mostly implemented in the micro process, i.e. the actual compar-
ison of pairs of stimuli (or: references). The detailed analysis presented in this
section deals with both aspects: we discuss properties of the micro process as
well as of the training/application process. First, we rank the classifiers by the
complexity of their models. Then, we discuss a list of micro processes. These
are required for a ranking of the classifiers by the complexity of their micro
processes. Eventually, we provide a portfolio of classifiers by model rigidity and
model complexity.

Table 27.1 ranks the classifiers introduced in the first two parts of this text-
book by the complexity of their models. See Chapter 29 for an explanation of the
perceptron and of radial basis functions. Cluster analysis is top-ranked, because
it has no model at all. The application process is performed directly on the data
and the result is just a representation of this data. Bayesian networks with their
large number of required confusion matrices are on the other end of the list.
This group of methods (that includes Markov processes) arguably requires the
largest models.

The fundamental types of models are densities, references, thresholds and
weights. A density function measures the frequency of appearance of a (multi-
dimensional) stimulus that belongs to some scale (dimension). Densities are
global descriptions of events. In comparison, a reference is just one example
for a semantic context. Thresholds contain even less information. The typi-
cal threshold is just a limit for one dimension of a description space. Hence, it
implicitly contains a reference to the corresponding description element. Eventu-
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Classifier Size Model Type Description
Cluster Analysis 1 - -
Decision Stump 2 Thresholds One Threshold
Random Selection 2 - Random Threshold
Boosting 3 Weights Weights, Thresholds
Decision Tree 3 Thresholds Rules with Thresholds,

Weights
Gaussian Bayes 3 Densities Means/Deviations
Classifier
Support Vector 3 Weights Hyperplane Configuration,
Machine Threshold
Vector Space Model 3 Thresholds Query, Threshold
K-Means 4 References Codebook, K
Self-Organizing Map 4 References Codebook, Learning Rate
Linear Discriminant 5 Densities Class Means/Deviations,
Analysis Labels
K-Nearest Neighbor 6 References Labeled Samples, K
Mixture Models 7 Densities One Mixture/Class, Weights
Perceptron 8 Weights Weights/Layer,

Firing Thresholds
Radial Basis 8 Weights Weights/Layers, Radii
Functions
Bayes Classifier 9 Densities One-Dimensional Densities
Bayesian Network 9 Densities Confusion Matrices

Table 27.1: Classifiers by Model Complexity.

ally, weights can be everything from hyperplane parameters to synaptic weights
in neural networks. Ordered by complexity, thresholds are the simplest models,
then come references and eventually densities. The rank of the weights depends
on their concrete design.

As we can see from Table 27.1, some methods are co-ranked. Decision stumps
and random selection are both very simple methods that require exactly one
scalar as the model. The k-means classifier requires exactly the same number of
references as the self-organizing map. Only the training process is more sophis-
ticated in the latter method. Sometimes the complexity of the model depends
on the topology of feature space. For example, a decision tree can be very simple
or very complex – depending on the input data. However, in general, it is sig-
nificantly more complex than random selection and less complex than k-means.
This is equally true for the support vector machine and some other methods.
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Micro Process Description Concept Theory
Best Fit min(m(r, f)) Prototype Theory
Comparison f < ε Classical Theory
Maximum Likelihood argmaxi Pi Theory Theory
Quantized Weights quant(w.f) Classical Theory
Similarity Measurement m(q, f) < ε Prototype Theory

Table 27.2: Types of Micro Processes.

Table 27.2 lists the fundamental types of micro processes. So far, we encoun-
tered five methods. Best fit is typically applied in k-means and some related
methods. We search for the best representative in a collection of references that
represent the model. The best fit paradigm is based on the prototype concept
theory. Out of a population of prototypes we select the best match (the typical
one). If metric distances are used for selecting the best match, this approach is
prone to being supersemantic.

Comparison is a straightforward approach in which we transform quantities
into binary predicates that are interpreted logically. One typical example is the
decision tree, in which a macro process of logical expressions is based on a com-
parison micro process. Comparison processes are usually not supersemantic and
follow the (neo-)classical concept theory. Concepts are fenced off by thresholds.

The maximum likelihood principle needs no explanation. It covers all density-
based methods and can equally be applied on a priori statistics and a posteriori
knowledge. The Bayes classifier is a typical example. The norms (densities,
mixtures) used for the representation of the description space indicate that the
maximum likelihood principle is neither a straightforward implementation of the
classical nor the prototype concept theory. It is rather an implementation of the
theory theory in which norms stand for mental theories that are developed and
refined over time.

Quantized weights is a two-step method. In the first step, the input is
weighted and in the second the result is quantized. The example par excellence
is the support vector machine. Input vectors are projected on the search space
and then quantized to two classes by the separating hyperplane. The danger of
supersemantic behavior in the maximum likelihood method and the quantized
weights method is limited. As a typical micro process for separating classifiers,
the quantized weights process is based on the classical concept theory.

Eventually, similarity measurement is the psychologically best understood
micro process. Here, we measure the similarity between a stimulus and some
reference (e.g. a query). Similarity measurement is, for example, employed
in cluster analysis and the vector space model. Like for best fit, similarity
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measurement can be perceived as supersemantic if inappropriate measures are
used. This issue is discussed in detail in Chapter 28. Obviously, similarity
measurement is a key ingredient of the prototype concept theory.

Classifier C Training Micro Process
Random Selection 1 - Comparison
Linear Discriminant 2 Density Estimation Maximum Likelihood
Analysis
Mixture Models 2 Density Estimation Maximum Likelihood
Support Vector 3 Optimization Process Quantized Weights
Machine
Decision Stump 4 Heuristic Comparison
Vector Space Model 4 - Similarity
Bayes Classifier 5 Density Estimation Maximum Likelihood
Bayesian Network 5 Density Estimation Maximum Likelihood
Gaussian Bayes 5 Density Estimation Maximum Likelihood
Classifier
Decision Tree 6 Convergent Learning, Quantized Weights,

Heuristic Comparison
K-Means 7 - Best Fit
Self-Organizing Map 7 Convergent Learning Best Fit
K-Nearest Neighbor 8 - Best Fit
Boosting 9 Convergent Learning Quantized Weights
Cluster Analysis 9 - Similarity
Radial Basis 10 Convergent Learning Quantized Weights
Functions
Perceptron 11 Backpropagation Quantized Weights

Table 27.3: Classifiers by Micro Process (C)omplexity.

It is interesting that the wide variety of classifiers can be approached by this
limited number of micro processes. Table 27.3 sets micro processes in relation
to classifiers and describes the type of training employed. The categorization
methods are ranked by the complexity of their concrete micro processes. Random
selection is on the top, because it is based on simple comparison of the input
data to some random reference. The standard neural network can be found at
the bottom, because it requires (multi-layer) weighting of the input.

The table shows a trade-off between training complexity and application
complexity. Complex models and training processes (e.g. density estimation)
allow for quick application of the micro process. The maximum likelihood prin-
ciple can be executed quickly. On the other hand, the simple or non-existent
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training processes of the k-means classifier and cluster analysis make complex
micro processes necessary. We conclude that – as so often in computer science
– storage (complex models) can be traded for processing power (complex mi-
cro processes). The top-ranking of the density-based methods justifies our view
that these methods are tailor-made for implementation in limited environments
(embedded systems, mobile systems). See Chapter 10 for details on this issue.

BN

CA

GMM
BC

Boosting

ANN

DT

KNN

K-Means
SOM

VSM
SVM
LDA

Model Rigidity

Model
Complexity

low (selective) high (equalitarian)

low (pioneering)

high (following)

Figure 27.1: The Categorization Portfolio.

Figure 27.1 organizes the classifiers in a portfolio. We reuse model complexity
from Table 27.1 as the vertical dimension. The rigidity of the model (flexibility)
is drawn on the horizontal axis. Rigidity can be seen as the inverse of proneness
to overfitting. As the overall layout shows, there is a correlation between model
complexity and rigidity. Some models are too simple for being flexible and other
models pay their flexibility with high complexity.

We call the classifiers with simple models pioneering and the others follow-
ing. Classifiers with flexible models are called equalitarian, the others selective.
Selective classifiers are distinguished by their dependence on appropriate input.
For example, cluster analysis is a selective pioneer. This method can very well
be used to get a first overview over feature space but it will produce results of
little use if no clusters of medium size do exist in the data. In contrast, decision
trees are equalitarian pioneers, because they are able to separate any data well.
On the other hand, decision trees are prone to overfitting which makes them
questionable for the eventual use in media understanding applications.
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The k-nearest neighbor classifier is a selective follower. It can be (and is)
used for categorization in media understanding applications but the quality of
the results depends heavily on the ground truth, i.e. the labels of the references.
A nice example for an equalitarian follower is the Bayes classifier. This method
is applicable on almost any data set and fair enough for media understanding
applications of a not too wide focus. In summary, we recommend pioneers for
early application and followers for market ready applications. Selective methods
perform well if the data fits the classifier. Then, they should be superior over
equalitarian methods. However, on arbitrary data the latter type of method
should perform superior.

The central machine learning question of media understanding is: When
which classifier? The portfolio is intended to answer this question. With to-
day’s set of methods almost any ground truth can be represented. The relevant
decision parameters are the belief in the representativeness of the ground truth
which operationalizes as the risk of overfitting and the effort required for train-
ing, model storage and application. The experimenter needs to make up her
mind about these issues in the first place. Then, the tables presented in this
section can be used to select a few appropriate methods, test them and select
the best-performing one.

27.2 Limits of Learning

Now, we move from concrete algorithms to the general frontiers of categorization.
In detail, we investigate four limits of learning.

1. The general feasibility principle of learning

2. The general convergence principle of categorization machines

3. Quantization of the general learning ability of classifiers

4. Quantization of the general training requirements of classifiers

All of these limits are attributed as general. That is, we do not focus on
particular algorithms but investigate the overall limits of the domains. It is true
that some of the presented theories are closely linked to particular classifiers.
For example, the convergence principle and the measure for learning ability were
both developed by Vapnik who is also the father of the support vector machine.
The theory of training requirements is related to the development of boosting.
Still, the principles are also applicable to the other classifiers. Hence, we present
them together as a handy theory of the learning process.

The feasibility principle of machine learning is simple: A learning algorithm
is only relevant if it is able to learn all possible patterns expressible by a ground



504 CHAPTER 27. FRONTIERS OF LEARNING MACHINES

truth (function) in less or equal polynomial time. Here, the ground truth func-
tion will only include patterns relevant in our world, not arbitrary ones. Still,
reaching this degree of feasibility is hard or even impossible to achieve for some
classifiers. Hence, the principle is often applied in relaxed form: A learning al-
gorithm is relevant for those learning problems which it can solve in less or equal
polynomial time.

The convergence problem was discussed in detail for information filtering
procedures in the last chapter. Of course, it is of the same (or even greater)
relevance for learning algorithms. Both the training process and the application
process must converge. That is, the training process must finish in finite time
and result in – at least – a local optimum. Oscillation (see next section) must
be avoided. The application process must not show oscillating behavior as well.
That is, the result of the application process must not depend on the time of
termination.

Number of Training Samples

Empirical Risk

Expected Risk

Figure 27.2: Consistency of the Learning Process.

The general model of convergence in classification was developed by Vapnik
and is based on his notion of expected risk and empirical risk as laid down in
Equations 18.1 and 18.5. The idea is illustrated in Figure 27.2. Over the training
process, the quality of the classifier should approach the optimum indicated by
the dotted line. The location is the tangent to both risk curves. The empirical
risk rises with the number of training samples applied, but the rate of increase
moves to zero. That means that we expect the learning process to improve
categorization results over time. The classifier will fail less (often) later than
earlier. On the other hand, the expected risk describes the application behavior
of the classifier. In the early stage, errors will be larger than in later stages. We
conclude that the expected risk can be seen as a function of the first derivate
of the empirical risk. We will discuss this function at the end of this section.
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The samples of the empirical risk approach the model of the expected risk. The
optimum of both curves is the best representation that can be reached by the
classifier under investigation.

Possible Impossible

Figure 27.3: VC Dimension of the Separation Line.

How good can this optimum be? This question asks for the discrimination
power of machine learning methods. A nice answer was proposed by Vapnik
and Chervonenkis, hence it is called the Vapnik Chervonenkis (VC) dimension
of learning. The VC dimension h of a classifier is the number of data points that
can be separated by it in arbitrary fashion. Figure 27.3 shows an example. The
straight line (e.g. the discrimination function of a perceptron) is able to separate
three data points, but not four. The example on the right side is not separable
by a straight line. A density model (e.g. a mixture) would be able to separate
both examples.

The VC dimension is a straightforward practical approach for the description
of discrimination power. However, there are two degrees of freedom. The first
is the size of feature space. As we discussed in Chapter 18, a given number of
data points can more easily be separated in a higher-dimensional space than in a
low-dimensional one. There is simply more space that separates the data points.
The second parameter of relevance is the number of classes that are allowed. The
more possible groups the data points can form, the harder the discrimination
problem becomes.

Practically, the VC dimension is often measured for two-dimensional feature
spaces that contain a population that needs to be separated in two groups.
For this problem definition, Table 27.4 lists the VC dimensions of the discussed
classifiers. Cluster analysis has been added to the group with high discrimination
power, because of the interpretability of the outcome. For the same reason, this
classifier could be evaluated to h = 1 (the absolute minimum). For k-means
and the self-organizing map, we assume a codebook of k reference vectors. Each
reference vector behaves like a vector space model, which is capable of separating
three data points. The k-nearest neighbor algorithm has a VC dimension h = 2
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Classifier VC Dimension Overfitting Risk
Decision Stump 2 low
K-Nearest Neighbor 2 low
Linear Discriminant Analysis 2 low
Support Vector Machine 3 low
Vector Space Model 3 low
K-Means 3K medium
Self-Organizing Map 3K medium
Bayes Classifier ∞ high
Bayesian Network ∞ high
Cluster Analysis ∞ high
Decision Tree ∞ high
Mixture Model ∞ high

Table 27.4: VC Dimension of Important Classifiers.

if k = 1. For larger k, h rises accordingly.
As we see from the table, three groups of classifiers emerge. The discrimina-

tion power of the linear support vector machine is not generally better than the
one of the vector space model. K-means and self-organizing map have the same
VC dimension despite of the different learning algorithms. Bayesian networks,
decision trees and mixture models are able to model any groupings. There is a
link between VC dimension and the risk of overfitting. The VC dimension stands
for discrimination power and flexibility of learning. Flexibility in the learning
process goes hand in hand with high risk of overfitting. Methods with a high VC
dimension can be described as believing in the ground truth data while h→ min
indicates a conservative classifier that believes in its model (experience).

The VC dimension can be used to estimate the boundary of the application
error. The following equation from [381] describes the relationship.

rapp < remp +

√√√√h
(

log
(

2n
h

)
+ 1
)
− log

(
ε
4

)
n

(27.1)

Here, remp is the empirical risk (training error), n is the size of the training
set and ε is the confidence interval. With probability 1−ε this relation will hold.
The application error rapp can be seen as the aggregated expected risk. Hence,
the second term of the equation stands for the shape of the transformation
between empirical and expected risk.

From the application error we bridge to the last problem that we want to
discuss in this section: How many training samples do we need to keep the
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application error below an acceptable threshold? One answer to this problem is
given by the probably approximately correct learning theory (PAC theory). PAC
theory calls concrete classifiers and their parameterizations hypotheses. The
central statement of PAC theory is a relation between training sample size and
risk. Mathematically, the relation can be stated as follows.∏

k

Pk
(
classify(xk, a) = yk ∧ a is wrong

)
≤ (1− ε)n (27.2)

That is, the probability that a wrongly trained classifier defined by hypothesis
a classifies k ≤ n samples xk correctly as yk is smaller or equal the n times inverse
confidence interval ε. This rule that appears trivial can be used to estimate the
number of required training samples n. The desired confidence ε given, the
probabilities Pk can be computed and aggregated until the desired quality level
is reached. Parameter k is the iterator over the probabilities. The solution will
be probably approximately correct.

The derivation of this rule goes as follows. We start with the hypothesis that
a wrongly trained classifier (i.e. the rate of correct classifications) cannot be
better than 1−ε. Hence, for the k-th description-sample pair we have Pk ≤ 1−ε.
The formula is simply the multiplicative aggregate.

Practically, the left part of the relation is often estimated (not computed) in
the interval δ ∈ [0, 0.5] while ε ∈ [0.001, 0.05]. Then, the PAC n can be computed
as:

n =
log δ

log(1− ε)
(27.3)

In conclusion, there is no big theory yet that would describe the limits of
machine learning. The presented models are established fragments of a future
theory. VC dimension and PAC theory are of immediate practical use. The feasi-
bility principle and the convergence principle are valuable background knowledge
for the understanding of the machine learning problem. In the next section, we
introduce another piece of background knowledge that will become valuable in
the last section: major aspects of dynamical systems theory.

27.3 Dynamical Systems Theory

In Chapter 26, we stressed the importance of convergence for information fil-
tering processes in media understanding. Convergence is also essential in the
categorization step. The belief in the correctness of the categorization results
depends primarily on the absence of oscillation, i.e. the class label, once de-
termined, must remain constant. However, most categorization methods are in
training and/or application dynamical systems. It is, therefore, not surprising
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that they show under certain circumstances dynamical – even chaotic – behav-
ior. For the safe application of classifiers in media understanding it is crucial
to understand, when and where categorization processes converge, where they
oscillate and if their behavior can even become chaotic.

This section and the next are dedicated to this true frontier of media un-
derstanding. Surprisingly, the behavior over time of classifiers has hardly been
investigated in media understanding research so far. Categorization results are
often taken as correct without critical analysis of the basis and the process of
their computation. During our short journey, we will see that both the input
data and the algorithm employed for categorization can cause undesired oscil-
lating behavior.

The organization of the two sections is as follows. In this section, we intro-
duce the workbench required for the analysis. We review the major properties
of ergodic systems and outline the most important aspects of measure theory,
which is required to define orbits and attractors in dynamical systems theory.
In the next section, we apply this knowledge on our set of classifiers. We will see
that some methods are prone to oscillation while others guarantee convergence
for any input configuration.

Ergodic
Theory

Dynamical
Systems

Chaos
Theory

Convergence

Categorization

Figure 27.4: Categorization and Dynamical Systems Theory.

Figure 27.4 brings the topics of this section into context. The discussion
focusses on the properties of dynamical systems. For that, we require basic
knowledge of the structure of ergodic systems (open sets, σ algebras, etc.). From
dynamical systems, stable orbits and attractors the trail leads on to chaotic sys-
tems with strange attractors. The tension between convergence, oscillation and
chaotic behavior (e.g. bifurcation) is the theme of this section. The understand-
ing of these terms is employed in the next section to investigate the training and
application behavior of selected classifiers.

Dynamical systems theory deals with the behavior of flow functions over
time. We want to know whether or not they stay in a limited orbit, an attrac-
tor. For that, we have to have an understanding of the operations that can be
performed by the flow functions over time and we require a method for measur-
ing the membership (distance) of a state of the flow to the attractor. The most
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general description of the data manipulated in dynamical systems is arguably
topological. Our basic unit of operation is the open set.

Bε(x) =
{
y ∈ X

∣∣d(x, y) < ε
}

(27.4)

The open set Bε(x) is a sphere in the set X with center x and delimited by
ε. A closed set would include ε in the sphere. Based on open sets, we can define
a σ algebra Σ of space X by the following conditions.

A ∈ Σ→ X \A ∈ Σ (27.5)⋃
Ai ∈ Σ (27.6)

∅, X ∈ Σ (27.7)

The requirements are unspectacular. The algebra must be closed over all
subsets. The σ algebra can be used to define Borel sets as the smallest algebra
that contains all open sets.

B = inf Σ(X) (27.8)

For our purpose it is sufficient to understand Borel sets as the basic building
blocks of the space X on which the dynamical system under consideration (a
classifier) operates.

That defines the data basis. Our second requirement is a measure that can
operate on this data. General measure theory defines the following requirements
for measures m : Σ→ R+,∞.

m(A) ≥ 0 (27.9)
m(∅) = 0 (27.10)

m
(⋃

Ai

)
=
∑

m(Ai) ⇐⇒
⋂
Ai = ∅ (27.11)

Any set in the algebra is projected on a positive real number. Empty sets
are measured as zero. The union of non-overlapping sets is their sum. This
straightforward definition of the set is, for example, fulfilled by the Lebesgue
measure mλ.

mλ(B) =
∏

(yi − xi) (27.12)

Here, B is a Borel set. The pairs (xi, yi) define dimensions of the i ≤ n
dimensional object represented by B. Hence, mλ is a natural measure of the
volume of regular objects. We will need it below for the definition of attractors.
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With these requirements we can now define dynamical systems and, subse-
quently, ergodic (that is, working) dynamical systems. The central element is
the temporal flow function.

φt : X → X (27.13)

Here, X – the phase space – is a σ algebra of Borel sets on which measures
m can be defined (e.g. the Lebesgue measure). Time is assumed to be discrete
and positive (t ∈ N+). The flow φt has to have the following properties for sets
x ∈ X.

φ0(x) = x (27.14)
φi(φj(x)) = φi+j(x) (27.15)

Often but not necessarily, it will be Ck smooth and invertible as well.

(φt(x))−1 = φ−t(x) = x̄ (27.16)

Then, x̄ is called the preimage of the flow.

φt(X)

Figure 27.5: Example of an Ergodic System.

In our context, classifier training functions and application functions are flow
functions that operate on description spaces and parameter spaces represented
by σ algebras. Figure 27.5 illustrates a working system that operates on an
algebra X. The flow function transforms one algebra of open sets into another.
Formally, an ergodic system is defined as follows.

φt(x) = x→ m(x) = 0 ∨m(X \ x) = 0 (27.17)
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Every set x ∈ X that remains unaltered by the temporal flow must either be
empty (e.g. of zero volume, if m is the Lebesgue measure) or comprise the entire
algebra. Otherwise the system is not working (ergodic). Ergodic systems in
this sense are, for example, the foundation of information theory (Section 20.3).
Dynamical systems can be investigated for being ergodic by arbitrary measures
except invariant measures. An invariant measure on a flow is defined as follows.

m(φt(x)) = m(x) (27.18)

That is, the measurement process is analogous to the flow operation. This
can, for example, be the case for transformational similarity measures (see Chap-
ter 28).

The orbit c of a dynamical system is defined as the set of points that can be
reached by the flow function over time.

c(x) = {φt(x)} (27.19)
c(x) = {x} (27.20)

The second equation describes a rest position. A flow function is called T-
periodic, if φt+T = φt, i.e. the function oscillates in the orbit over the interval
T .

Stability is defined for dynamical systems as for convergent systems and iter-
ated function systems (last chapter): by contraction. We can use the Lebesgue
measure to quantify the size of a set.

mλ(φt(x)) < mλ(x) (27.21)

Hence, the flow function contracts the set x. That will be the case if the
Jacobi matrix of the flow function (first derivations in all directions) has a de-
terminant smaller than unit size. A contracting flow function is called dissipative.

Eventually, a dissipative flow function in some orbit c will reach an attractor
set c̄. Attractors are characterized by the following properties.

c̄ ∈ X (27.22)
c̄ = φt(c̄) (27.23)

c̄ =
{
x ∈ Bε(c̄)

∣∣ lim
t→∞

φt(x) = c̄
}

(27.24)

The first requirement states that the attractor must lie in the algebra X
on which the flow operates. The second one states invariance in the attractor
against the manipulation caused by the flow function. Eventually, the attractor
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must be closed. That is, in an open neighborhood of the attractor, the flow
function must return from all1 starting points to the attractor over time.

Figure 27.6: The Lorenz Attractor.

The general definition of the attractor covers different sorts of dynamical
behavior. Points of rest are a trivial option. Oscillating flow functions can
easily be covered by an attractor. But even strange attractors caused by chaotic
behavior of the dynamical system are covered by the definition. Figure 27.6
shows the famous Lorenz attractor, the parameter space of a weather model,
as an example. It is important to note that the existence of an attractor is no
guarantee for reasonable behavior of the flow function (in our case, a classifier).

We require a notion of reasonable behavior. The straightforward solution is
to call everything reasonable that is not chaotic. A chaotic dynamical system
is according to Guggenheimer defined as being sensitive to the initial state of
the system. More precisely, Devaney defines a chaotic flow function φt(x) with
dense orbit c as follows.

m−1
(
φt(x), φt(Bε(x))

)
≥ δ (27.25)

That is, the similarity between the set x and its open neighborhood will not
converge. Measure m−1 is a distance function here. The definition covers the
popular understanding of chaos as the behavior of a system in which a small
change in the input can cause a large difference in the output. The resulting
attractor is called a strange attractor.

Oscillating systems and chaotic systems require both feedback for the dy-
namical behavior. One form of chaotic behavior that is of particular interest is
bifurcation. Bifurcation requires a dynamical system that can be parameterized.
A bifurcation point lies at a parametrization where the characteristics of the
flow function change dramatically. Sequences of bifurcations can lead to chaotic
behavior.

1Precisely, almost all, i.e. all sets x with mλ(x) > 0.



27.3. DYNAMICAL SYSTEMS THEORY 513

3.1 3.5 3.82
a

f

Figure 27.7: Bifurcation and the Logistic Map.

One famous example – next to the Mandelbrot set and Julia sets – of such a
dynamical system is the logistic map illustrated in Figure 27.7. It is defined as
follows.

xt+1 = a.xt(1− xt) (27.26)

Here, xt ∈ [0, 1] is the flow over the trivial algebra. The parameter a controls
the behavior of the logistic map function. The function is typically used to
simulate the development of a population. For a < 1 it will die, for 1 < a < 3
it will end in a stable attractor, for 3 < a < 3.45 it will oscillate between two
values. The interesting behavior starts at a = 3.57. Then, the flow will end in
a cascade of bifurcations (illustrated in the figure) and the development of the
population will be chaotic.

This example should emphasize our statement from above: The existence of
an attractor is no guarantee for convergent behavior. In particular, parameter-
ized flow functions – such as classifiers – are often prone to oscillation or even
chaotic behavior.

Before we conclude this section, we consider it beneficial to make a short
note on the relevance of game theory for the judgment of the behavior of cate-
gorization methods. Generally, the situation in categorization is fundamentally
different from a game. There is only one actor that tries to optimize his output.
This actor does not have to consider the goals and strategies of competitors.
One exception may be Bayesian networks where different theories compete for
the explanation of an event or a sequence of events. Then, the investigation
of the classification process by game-theoretic methods and the construction of
Nash equilibria (optimal expected value for all players) may be of interest.

In this section, we have introduced a box of tools for the description and
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analysis of dynamical systems. Flow functions, orbits, attractors, measures and
ergodic systems are employed in the next section to analyze the dynamic behav-
ior of classifiers in training and application.

27.4 Oscillating Classifiers

Below, we analyze the dynamic behavior of the self-organizing map, the expec-
tation maximization algorithm in general and gaussian mixture models in par-
ticular. Furthermore, we investigate dynamics in associative memories, learning
vector quantization and the Kalman filter. Primarily, we look for undesired os-
cillation in training and application that hinders a perfect convergence process.
Alongside, we look out for chaotic behavior, namely bifurcation points.

Our method is simulation. For trivial settings (two or three states to sim-
ulate) the investigation has been done by hand. Larger parameter spaces and
configurations were investigated by computer simulation. All parameter spaces
and configurations (e.g. states) were traversed systematically. That is, for every
dimension that required investigation, a linear sequence of samples starting from
the origin and going to the maximum were considered. The curse of dimensional-
ity limits this form of evaluation. For example, five dimensions with ten selected
values each amount to 105 combinations that have to be investigated. Hence,
we only performed simulations that end in acceptable time (a few hours to a few
days). Despite the limitations, this form of simulation allows to provide a fair
overview over the behavior of the investigated functions. Only few locations of
interest will escape this statistical approach.

The terms introduced in the last section are used in the following way in
this analysis. The learning algorithms and application processes are interpreted
as flow functions that operate on a classifier model and parameter space (the σ
algebra). By oscillation we mean a T-periodic flow function that returns to the
starting point after T iterations. The flow function is considered to be ergodic,
i.e. the classifier model is changed in each iteration of the learning/application
process. However, convergence limits the magnitude of the ergodic process over
time.

Which classifiers are dynamic? Only those that use an iterative process for
training and/or application. Hence, methods such as the k-nearest neighbor
classifier or the vector space model are not of interest. Furthermore, the opti-
mization algorithms can be sorted out (support vector machine, decision tree,
boosting). Eventually, the linear algorithms used in Bayesian networks provide
no room for oscillation. Related methods such as the Bayes classifier can also
be ignored.

What remains? Candidates for oscillation are the self-organizing map, the
expectation maximization algorithm and mixture models. Joint with the con-
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vergent filters, we investigate the following groups below.

1. Associative memories (Hopfield network, Boltzmann machine)

2. Self-organizing methods (self-organizing map, learning vector quantiza-
tion)

3. Expectation maximization (including the Kalman filter)

4. Mixture model classifier

The convergence behavior of the associative memories has already been dis-
cussed in the last chapter. It is interesting that the same fundamental oscillation
pattern exists both in the Hopfield network and the Boltzmann machine. It can
already be shown in a network of just two nodes (D = 2). For two nodes s1, s2

and weights w12 = w21 = 0.5 and a firing threshold of ε = 0.5, oscillation is the
result of the following configuration.

Time s1 s2

0 -1 1
1 1 -1
2 -1 1
3 ... ...

Table 27.5: Oscillation in the Hopfield Network.

This T-periodic (T = 2) pattern can be extended to arbitrary dimensions
D > 2 by selecting the weights between the old and the new dimensions small
enough. This is just a simple oscillation pattern. We are positive that many
other, more complex ones exist as well. However, we do not believe (and could
not identify) chaotic behavior in the associative memories. The quantization
space appears to be too limited.

Can the codebook of a self-organizing map – during training – become a
strange attractor? Figure 27.8 illustrates idea. Oscillation of the codebook
vectors would be caused by configurations of training vectors that draw the
references back and forth to the same extent.

Our quantitative experiments suggest a negative answer to this question.
Even in tailor-made setups, the adaptation of the reference vectors prevents
oscillation. Depending on the center of gravity in the data, the movement of each
reference keeps its direction from the first iteration on. Hence, it performs one-
sided negative exponential convergence. We could not identify a configuration
where the self-organizing map would have shown a different behavior. Hence,
there is also no oscillation in the simpler learning vector quantization and since
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Figure 27.8: Example of an Oscillating Self-Organizing Map.

there is no oscillation there is also no room for chaotic behavior. Bifurcation
points are anyway out of the question as there is no parametrization in the
self-organizing methods. By the way, the self-organizing map shows the same
convergence characteristic as learning vector quantization.

Time

Model

Estimate

Figure 27.9: Oscillation in Expectation Maximization.

For the general expectation maximization algorithm, oscillation is confirmed.
For example the Lotka-Volterra equations for the simulation of a population
of foxes and rabbits oscillate in a stable fashion over time and have the same
morphology as the expectation maximization algorithm. As we named it in the
last chapter, it is a convergent process. This set of equations is defined as follows.

Rt+1 = Rt(a1 − a12Ft) (27.27)
Ft+1 = Ft(a21Rt − a2) (27.28)

Here, Rt, Ft is the size of the rabbit/fox population at time t, respectively.
Parameter a1 is the birth rate of rabbits, a2 the death rate of foxes and the two
other parameters describe how many rabbits become victims of foxes. The re-
sulting oscillating process is illustrated in Figure 27.9. A large rabbit population
provides the basis for growth in the fox population. The additional foxes will
cause a reduction in the rabbit population, which in return makes life harder for
the foxes, and so on.
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What is in general true for the expectation maximization algorithm need
not be true for the Kalman filter in particular. We could not identify oscil-
lating behavior as clear as in the Lotka-Volterra model. Instead, we found a
strong dependence of the Kalman filtering result on the initial state, i.e. the
sequencing of the input values. Hence, oscillation in the Kalman filter is limited
(among others, by the belief term/measurement update) but there is indication
that the Kalman filter might show chaotic behavior if the input data is chosen
appropriately. This issue requires further investigation.

Eventually, mixture models did not show oscillating behavior in our quanti-
tative experiments, nor was there an indication of chaotic behavior. However, it
appears from time to time that the mixture model learning algorithm does not
terminate. The reason is that the threshold for termination is not met by the
model. That is, it is not possible to describe the input data sufficiently exact
by the model. This cannot happen for arbitrary mixtures but very well for rel-
atively rigid models such as Gaussian mixtures. In case, it is recommended to
relax the model and restart the training process.

Group of Methods Oscillation Chaos
Associative Memories X ×
Self-Organizing Methods × ×
Expectation Maximization X ∼
Mixture Models ∼ ×

Table 27.6: Results of the Dynamical Analysis of Classifiers.

Table 27.6 summarizes the results of our experiments (qualitative and quan-
titative) on oscillating classifiers. Associative memories and expectation max-
imization show oscillating behavior. Self-organizing methods – to the author’s
surprise – not. Chaotic behavior appears to be a minor issue in classification.
However, the last word has not been spoken on this matter. Chaos, in particu-
lar, bifurcations are often hidden at particular locations of the parameter space.
The employed simulation method gives a fair chance of identifying the majority
of such points, but there is still the possibility of a miss.

We consider the dynamical investigation of practical classifiers an important
frontier of future media understanding research. We have to perform deeper in-
vestigations of the named classifiers in order to understand better, under which
conditions the training data and/or parameters will cause oscillation – or even
chaos. Media understanding depends on the categorization method for the con-
textualization of the media summaries. This step is of paramount importance
for the entire scheme. It must not be non-deterministic or even chaotic.

In the last two chapters we made the transition from media description to
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media categorization. In the two remaining chapters we aim at setting media
understanding in the human context. The next chapter deals with categoriza-
tion processes, in particular, the micro process and its relationship to human
similarity perception. Eventually, Chapter 29 deals with the apparent question:
How can we do media understanding in the same way as humans?



Chapter 28

Human-Like Similarity
Perception

Explains distance-based similarity, the improvements reached through the usage
of predicate-based models, their integration in dual process models and the new
perspectives gained from structural alignment and transformational similarity.

28.1 Similarity as Measurement

This chapter is about the micro process of categorization. Similarity measure-
ment is the essential ingredient of two of five micro processes that were listed in
Chapter 27. Performing similarity measurement is easy for humans but hard to
imitate for machines. Below, we review the four major similarity theories that
were mostly developed in psychological research. Furthermore, we endeavor to
sketch a scheme for unification of these theories. This section focusses – besides
the introduction of the general problem – on the classical similarity measurement
path in which it is operationalized as distance. The next section rises from this
semantically low level to the heights of predicate-based similarity measurement.
We review the major psychological findings about the shortcomings of distance-
based measurement and explain the psychologists’ remedies. Section 28.3 deals
with the merging of distance-based and predicate-based similarity measurement
in dual process models as they were suggested in the last decade. Eventually,
the fourth section introduces the two most recent similarity theories: structural
alignment and transformational similarity. We embed these approaches in a
general model in which the dual process model is the central component. In

519



520 CHAPTER 28. HUMAN-LIKE SIMILARITY PERCEPTION

summary, the goals of this chapter are explaining the major similarity theories
and unifying them in one model.

Why is it important to have a similarity measurement model that is equiva-
lent to human similarity perception? The major reason is that similarity mea-
surement is such an important tool for human beings. The history of its scientific
investigation goes back as far as Plato’s image theory (Chapter 22). We have
already sketched the various applications of similarity measurement in media un-
derstanding (which is a human-centered discipline). Other application domains
in computer science include case-based reasoning, indexing and general signal
processing. Outside computer science, similarity-based reasoning is employed
in a number of research areas. In biology, for example, taxonomies are used to
structure flora and fauna. Structural alignment is used to identify similarities
in gene strings. In chemistry, the similarity of molecules is investigated, e.g. by
maximal common substructures. In mathematics, we have similarity transfor-
mations, projections, the similarity principle of pseudo-analytic functions and
differential equations. In medicine, homeopathy is based on the similarity prin-
ciple. In physics, we measure the similarity of linear and exponential processes
and of thermodynamics. In electrical engineering, we have the similarity prin-
ciple of gas discharge and the similarity theorem of the Laplace transform. In
mechanics, we have the affinity laws and the law of dynamic similarity. And
so on. In everyday life, we orientate ourselves by object similarity, people with
similar ideas are sympathetic, we want to be dressed similar to certain sports
and movie stars, etc. In short, similarity assessment is ubiquitous in the human
world.

Therefore, it should be clear what similarity is. But that is not the case. In
his Seven Strictures on Similarity, Goodman points out that ’similarity alone
might be taken to be an empty explanatory construct.’ The listed applications of
similarity are indeed heterogeneous. The terms are based on different concept
theories. The measurement is often based on different norms. The principles
of comparison can range from exact matches over categorization to the diffuse
understanding of analogies. And we do not know much about the cognitive
processes that cause human similarity perception. Hence, it is no surprise that
we have a handful of – partially, conflicting – similarity theories but no com-
monly agreed understanding of what human similarity measurement is and what
human-like computational similarity measurement should be.

It is the declared goal of this chapter to contribute to pushing this frontier
of media understanding research (and many other disciplines). Our main focus
is on the categorization problem and there on the micro processes that employ
similarity measures (best fit and similarity measurement). For our approach
it is important to understand that, essentially, categorization is an iterative
process of choice and learning. Similarity measurement is performed in the
choice step. We already encountered choice models in Chapter 17. Luce’s model
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is based on similarity by distance measurement. More advanced models, such as
Shepard’s add a generalization function (discussed in the same chapter). Such
models are structurally similar to kernel functions – which is no surprise since
both types of functions have the same task to perform and employ the same
strategy: reordering of feature space. Below, we return to these concepts (choice
model, generalization, etc.) only where absolutely necessary. Due to the size and
importance of the investigated problem and the limited space available we will
strictly focus on the core topics of similarity measurement.

The remainder of this section is structured by four topics. First, we discuss
the idea of distance-based similarity measurement and introduce the necessary
prerequisites (in particular, scales of measurement). Then, we introduce and
structure the most relevant distance-based measures and measure groups, fol-
lowed by a brief discussion of advanced topics of generalization. Eventually, we
explain psychological experiments performed on distance-based similarity mea-
surement models and summarize the shortcomings that were identified.

Why is similarity measurement a frontier of media understanding research?
Because it is of paramount importance for the acceptance of such systems. Man
is the measure in media understanding. We cannot afford to employ machine
learning techniques for categorization that are subsemantic or – more frequently
– supersemantic. The results produced by such a system would not be appreci-
ated by the users. Surely, similarity measurement should be a general topic in
machine learning. But it is the application that generates the need for a good
solution. Hence, the general machine learning frontier is in every case also a
media understanding frontier.

The fundamental idea of similarity judgment by distance measurement is
simple: Two stimuli are the more similar the smaller the difference between them
is. This idea works very well for perceptual (for example, visual) stimuli but
partially as well for abstract stimuli. However, the general notion of similarity
is influenced by a number of factors, of which the following list names the most
important ones.

• Task (categorization, matching, analogical reasoning, etc.)

• Nature of the stimuli (abstract, perceptual – psychophysics!)

• Beliefs and norms of the individual

• Ability for generalization (curve characteristics)

• Personal choice model (similarity-based, grouping, etc.)

• Form of individual thinking: taxonomic, thematic

• Employed perceptual space and distance measure
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• Employed scale of measurement (interval, nominal, etc.)

Some of the points of the list have already been discussed. Task types and
types of stimuli in the first part of the book, choice models and generalization
in the second part, beliefs and norms in the second and third part. Taxonomic
versus thematic thinking was briefly mentioned in Chapter 22. We will return
to this issue in the third section of this chapter. Generally, we can say that sim-
ilarity judgment is situation-dependent, relative, role-based and context-based.

Two technical prerequisites of distance-based similarity measurement are the
employed spaces and scales of measurement. We need not review the mathemat-
ical theory of vector spaces here. It is sufficient to state that under a perceptual
space we understand a vector space that allows to perform some form of mea-
surement. The measurement can be metric, then we speak of a flat or Euclidean
space. It may also be non-metric in some form or other. The various options
are discussed in the last part of the section.

Name Definition
Nominal A = {ai|i ∈ I}
Ordinal B =

{
ai ∈ A

∣∣∣ ∧
i,j∈I

< (ai, aj) ∈ {true, false}
}

Interval C =
{
ai ∈ B

∣∣∣ ∧
i,j∈I

−(ai, aj) = |ai − aj |
}

Ratio D =
{
ai ∈ C

∣∣∣ ∧
i,j∈I

: (ai, aj) =
ai
aj

}
Table 28.1: Scales of Measurement.

The fundamental scales of measurement were already introduced in Chapter
7. There, we explained the principal differences between the scales. For the
discussion in this chapter – in particular, in Section 28.3 – we require a deeper
understanding of scales. That is why Table 28.1 lists set-based definitions of the
four basic scales of measurement. Here, I with |I| = n is the index set of the
points of measurement on the scale.

The four scales are defined by operators. The nominal scale is just a set of
measurement points. The ordinal scale is a nominal scale that provides at least
a comparison operator. For the sake of convenience, we could also defined an
equality operator. However, equality can also be reached by symmetric compar-
ison of two index points. The comparison operator is the micro process of the
ordinal scale. Repeated application allows to sort the input nominal scale A.
Please note that membership of the operations result is not a condition of the
scale definition!
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Similarly, an interval scale is an ordinal scale in which a contrast operator is
defined. Again, the difference between two index points needs not be a member
of the scale. This is also true for the ratio scale where we require an additional
operator for relativeness.

Name Example Sets
Nominal Members, e.g. Car Brands Predicate Scale:

{a1 = 0, a2 = 1}
Ordinal Sortables, e.g. Marks Alphabet
Interval Countables, e.g. Fingers N,Z
Ratio Qualifiables, e.g. Temperature Absolute Scales, Q,R

Table 28.2: Examples for Scales.

Table 28.2 lists a few examples for the scales of measurement. Practical
nominal scales are all lists of membership, for example car brands, a list of
personal friends and the things in a fridge. Fundamental sets that measure on
ordinal scale are the scale of predicates (equivalent to the binary code). The
alphabet is – for sorting – often considered to be scaled on the ordinal level. At
least, we refer to it as ABC but never as MBX. The set of natural numbers is
a typical example for an interval-scaled set. Absolute scales are ratio scales with
a natural origin, for example, the temperature scales and the scale of speed.

Why are the scales of measurement relevant for similarity measurement?
Because the scale of measurement of the dimensions of feature space determines
the measurement process. For example, distance-based similarity measurement
operates always on data that is at least interval-scaled. Predicate-based measures
operate exclusively on the predicate scale. It will be the topic of the third section
how we can overcome the limitations introduced by the scales of measurement in
the input data for better unified similarity measurement. Generally, it is helpful
to perceive similarity measurement on interval/ratio-scaled data as quantitative
measurement and on nominal/ordinal-scaled data as qualitative measurement,
because in the first case the output is a quantity and in the second case a
predicate (quality).

We have already discussed a number of distance-based similarity models in
various chapters of this textbook. They are all listed in Appendix B.1 and can
be organized into the following groups.

• True distances (mathematical and psychological Minkowski distances, Ma-
halanobis distance, etc.)

• Vector products (dot product, cosine measure, Tanimoto index, etc.)

• Supremal distances (dynamic association models, Mallows distance, etc.)



524 CHAPTER 28. HUMAN-LIKE SIMILARITY PERCEPTION

• Divergences (Hellinger, Kullback-Leibler, Bhattacharyya, etc.)

• Correlations (correlation coefficient, Cohen’s measure)

The true distances are the arguably most important group. The Minkowski
distances were already mentioned a couple of times. The mathematical form
(a1 = a2 in Q1) has been applied in numerous media understanding applications.
Psychological Minkowski distances (a1 6= a2) have recently been suggested to
overcome the supersemantic behavior of mathematical Minkowski distances (see
the end of this section). The common drawback of most true distances is their
foundation: The metric axioms have partially been falsified for human similarity
measurement. Hence, these models are practically important but psychologically
questionable.

The vector products represent the other end of the scale of distance-based
measures. In fact, they do not measure distance but similarity directly. Hence,
the psychologically correct application of vector products does not require the
introduction of a generalization function. The most important representative is
the dot product, which may be seen as the inverse of the first-order Minkowski
distance. The cosine distance is a close relative. The Tanimoto index uses
another interesting normalization.

Supremal distances embed the actual distance measurement process in an op-
timization meta-process that tries to identify the supremum of some association
problem. Of course, all of the dynamic association models discussed in the first
part of this book belong to this category. Furthermore, the template matching
measures discussed in Chapter 24 belong mostly to this category. The charac-
teristic feature of the supremal distance measure is the optimization criterion,
not the actual measure – which may, in fact, be a similarity measure.

Divergences are distinguished by the weight that is laid on the compared
vectors. A divergence will focus on one stimuli and evaluate the similarity of the
second to the first. Hence, a divergence measure will generally not be symmetric
(as required by the metric axioms). Since human similarity perception has also
been proven not to be symmetric, divergences are interesting options for the
semantic representation of human similarity judgment.

Eventually, correlation functions focus not on the individual value but on the
distribution over the scale, and they measure the likeness of these distributions
for two stimuli. The typical example is the correlation coefficient which has its
optimum in the middle of two extremes.

The practically most relevant items of the list in Appendix B.1 are the mea-
sures Q1 to Q5, Q8, Q9 and Q12. It is recommended to consider these measures
for quantitative similarity measurement applications. Generally, the symbols
x, y stand for two stimuli (description vectors) where every description element
xi with i < K is at least interval-scaled. In addition, of the supremal measures
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listed in Appendix B.3, measure M7 is of paramount practical importance. In
particular, in the form of the earth mover’s distance it is employed in numerous
media understanding applications.

Distance measures can be applied directly or with a generalization model.
In the first case, true distances are transformed to similarities by taking the
inverse. Vector products can be employed unaltered. However, psychological
experiments have shown that weighting based on a (disputed) generalization
curve is an important feature of human similarity cognition and learning. Hence,
it is always advisable to employ a generalization function on the distance score
in order to arrive at a semantic similarity score. The current model of choice is
the one proposed by Tenenbaum (see Chapter 16).

Alternatively, some authors suggest density-based models for distance-based
similarity measurement. We have already mentioned the Krumhansl model (M1)
in Chapter 17. Another interesting approach was suggested by Ashby and Perrin
[10] who do not consider concrete distance measures but just the perceptual effect
of stimuli confusion. Confusion is a form of false choice caused by high density in
the area of the reference stimulus. The authors consider the similarity arbitrary
in the individual experiment. Similarity is defined as the aggregated inverse
empirical risk (danger of a loss). For generalization-like weighting of the risk,
the authors suggest the natural logarithm.

Q2 Q1Q12

Dot Product Correlation Coefficient L1 Distance

Figure 28.1: Scale of Quantitative Similarity Measures.

Before we continue with the critical evaluation of the appropriateness of
distance-based similarity measurement, we would like to summarize the space
of distance measures in a one-dimensional scale. Figure 28.1 provides a scale
of quantitative similarity measures which is based on the following experiment.
In spaces of m to n dimensional spaces we have computed the distances for the
measures given in the appendix from each vector to all other vectors. The results
were aggregated by statistical moments. The figure shows the average distance
values for three representative measures.

As can be seen, the scale is spanned by the measures Q1 (city block distance,
first order Minkowski distance) and Q2 (dot product). The dot product is a
vector product, hence, a similarity measure. Since Q2 produces the extremal
similarity score of all considered measures, we name this end of the scale perfect
similarity. The L1 distance defines the other end of the scale. No other measure
produces a more extreme mean distance. Hence, we call this end perfect dis-
tance. In-between these ends we find all other distance measures from Appendix
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B.1. For example, the L2 norm (Euclidean distance, second order Minkowski
distance) can be found immediately left of Q1. Interestingly, our systematic
experiments located the correlation coefficient exactly in the middle of the scale.
The variances are generally low (≤ 10%).

Since none of the measures in the appendix exceed Q1 and Q2, it is tempting
to re-define them as a linear combination of the extremes. Since Q2 is a similarity
measure, the parameter on the scale provided in the figure defines the level of
generalization for the distance measures. That is, generalization can be seen as
an implicit function in the various groups of measures on the scale of quantitative
similarity measurement.

The scale of quantitative similarity measures represents a nice, conflict-free
world of similarity perception. However nice, this view is unfortunately not per-
fectly adequate. Psychological experiments have shown that human similarity
measurement is only under specific conditions performed as described by dis-
tance measures. Most of the time, humans deviate significantly from this path.
In the remainder of this chapter, we explain the experiments that have been
conducted by psychologists, summarize their findings and how they correspond
to the properties of perceptual spaces. This discussion provides the bridge to the
next section, in which we discuss the remedies for overcoming the supersemantic
behavior of quantitative measures.

Reference Stimulus 1 Stimulus 2

Figure 28.2: The Triad: Which Stimulus is More Similar to the Reference?
( c© CNBC )

The foundation of many psychological experiments on similarity perception
is the triad. Figure 28.2 illustrates an example. The test person is confronted
with a reference and alternatives. He has to decide whether he considers the
first or the second alternative more similar to the reference. In the figure, we
show a particularly tricky triad. The similarity of the reference to the first
stimulus can be described as thematic: The scene shown in the video frame has
the same layout, the same captions, etc. Only the anchor person is different. In
comparison, the second stimulus is taxonomically similar to the reference. The
situation is different, but some properties are the same (same anchor person,
same topic, maybe same shot sequence, etc.). In Chapter 22 we introduced this
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problem as the thematic taxonomic bridge. It is hard to decided which similarity
is higher. We will return to this question in the third section of this chapter.
There, we will see that the actual decision in this triad depends on the priming
of the test person.

Such psychological experiments have been conducted since the 1930ies. Gold-
meier was one pioneer. He found out that there is a major difference between the
attentive perception and the pre-attentive perception of stimuli. In the first case,
the shown signs are recognized and used for taxonomic comparison. In the fig-
ure, for example, the anchor person can be recognized by his face. Pre-attentive
perception is performed by the human brain where no semantic stimuli exist or
can be recognized. This is the case for phenomenal stimuli, as Goldmeier names
them, but also for a rotated face. The human brain is not capable of recognizing
all key features of rotated human faces.

Figure 28.3: Phenomenal Visual Features.

Figure 28.3 shows a few phenomenal features. Geometric primitives such as
triangles and circles are typical examples. Right angles, parallels and symme-
tries also belong to this category. Goldmeier found out that the similarity of
phenomenal features can best be described by distance measures. In the next
section, we will set this in context with predicates, call such stimuli integral
features and suggest the application of negative convolution (distance measure-
ment). The view of Goldmeier has been confirmed by other authors, including
Amos Tversky and Hubel and Wiesel, the pioneers of visual perception and
cognition.

Goldmeier points out that the human brain reacts stronger on particular
types of stimuli than others. For example, the measurement of vertical symme-
tries is more rigid than of horizontal symmetries. Attneave could show that the
strongest integral stimuli are points of high curvature. We introduced this fact
already in Chapter 14. It is the foundation of interest point detection in visual
media description. Eventually, Tversky could show that Gestalt laws are an-
other important ingredient of the similarity perception of integral stimuli. The
goodness of form determines diagnostic features, i.e. stimulus properties that
determine categorization.

However, psychological experiments have not just revealed where which dis-
tance measure should be used but also that in certain situations no quantitative
measure is able to represent human similarity perception adequately. These ex-
periments where usually performed in flat perceptual spaces in which the metric
axioms hold. We introduced the metric axioms already in Chapter 8 as the
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foundation of perceptual spaces. For example, the Minkowski distances fulfill
the metric axioms. That is one reason why they are so popular measures in
signal processing.

Name Definition Criticism
Identity of m(x, x) = m(y, y) Larger Stimuli are
Self-Similarity More Self-Similar
Minimality m(x, y) ≥ m(x, x) -
Symmetry m(x, y) = m(y, x) Complex Stimuli are Less

Similar to Simpler Ones
Triangle m(x, z) ≤ m(x, y) +m(y, z) Thematic Taxonomic
Inequality Bridge

Table 28.3: Insufficiencies of the Metric Axioms.

Table 28.3 lists the metric axioms for stimuli x, y, z and a distance measure
m as well as their essential insufficiencies with respect to human cognition. The
only unchallenged axiom is minimality. Every pair of different stimuli will be
more dissimilar than one stimulus to itself. Usually, we define the distance
m(x, x) = 0.

The three other axioms have all been falsified for important types of stimuli.
In particular, Tversky could show that they do not hold for abstract nor visual
stimuli. The identity axiom does not hold if a larger stimulus x with more signs
(hot stimulus) is compared to a smaller y with less signs (cold stimulus). Then,
m(x, x) < m(y, y) for most test persons. That is, if a stimulus shows more
details, the level of similarity is increased. Hence, the distance is smaller than
for a stimulus with few details. This behavior can be explained as moving away
from arbitrariness or: the inversion of entropy, as Flusser called it.

The symmetry axiom does not hold for the comparison of complex stimuli x
to simple stimuli y. Then, m(x, y) > m(y, x), i.e. the similarity of the simpler
stimuli to the more complex one is higher than the other way round (and inverse
for the distances). Tversky named as an example the similarity of China (x)
and North Korea (y). Most test persons found that North Korea is more similar
to China than China to North Korea. This behavior can be explained by the
human desire for more specific concepts. As we stated in Chapter 23, human
beings are prone to believing in more specific joint events. The violation of the
symmetry axiom expresses this behavior.

The most clearly falsified metric axiom is the triangle inequality. It is illus-
trated in Figure 28.4. The axiom appears natural. In a flat space it is not possible
to reach p2 from p1 on a shorter path than the straight line. No path over some
point p3, p4, p5 that is not on the geodesic line will be shorter. However, human
similarity perception is obviously not flat. For example, there is the problem of
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p1 p2

p3

p4

p5

Figure 28.4: Example of the Triangle Inequality in an Euclidean Space.

the thematic taxonomic bridge. If we have three stimuli x, y, z that represent vi-
sualizations of a ball, a balloon and an airplane, then m(x, y)+m(y, z) < m(x, z)
for most test persons. Why is that? Because m(x, y) is judged thematically (sim-
ilar shape), m(y, z) is judged taxonomically (similar property can fly). Both
times the similarity is high, hence the distance is small. But the similarity be-
tween a ball and an airplane is very low thematically and taxonomically. We
conclude that humans are able to measure similarity in different ways simulta-
neously. Metric distances cannot do that.

f1

f2

f3

f4

Figure 28.5: Cayley-Klein Geometries.

Several remedies have been suggested. The violation of the identity axiom
can be ignored since it appears only for very specific cases. The symmetry
axiom is ignored in quasi-metrics. The major problem is, therefore, the triangle
inequality. In order to eliminate this insufficiency and still measure similarity
as distance, it has been suggested to give up the parallel postulate of Euclidean
geometry. Doing this forces us to enter the world of Riemannian geometry,
where distance is defined as a tensor mij(p) differently in every point p of the
fundamental manifold. For spaces with constant curvature, Cayley and Klein
have proposed a nice scheme for the definition of non-Euclidean projective spaces
by the usage of conic sections and uniform distance measurement. Figure 28.5
shows an example. The fundamental ellipse defines the type of geometry (here,
spherical). Distance is measured by the cross-ratio of co-linear points.
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m(f1, f2) = a. log
(f1 − f2)(f3 − f4)
(f3 − f2)(f1 − f4)

(28.1)

Here, a is a global scaling factor (weight). The advantage of this model is
that distance is measured without the limitations of the triangle inequality and
that the type of geometry can easily be defined by the selection of an appropriate
conic section.

Non-Euclidean distance models have hardly been investigated by psychologists
so far and hardly been employed for distance measurement in practice. One rea-
son might be that the Riemannian approach in its generality is very complex
while the simple projective spaces do not allow for the definition of arbitrary dis-
tance measures. Hence, we are still searching for a better solution. The solution
investigated by psychologists since the 1970ies is presented in the next section.
For distance-based models we can conclude that they are good for integral stim-
uli, reliable, rational, but unlike human perception, supersemantic and, where
not, inflexible. Despite these disadvantages, they are heavily employed in media
understanding today.

28.2 Similarity as Counting

Reducing similarity judgment to a measurement process has proven inadequate
for humans, as we saw in the last section. The alternative proposed by psy-
chologists that would represent human similarity perception better is counting.
In this section we review models and functions for the counting of the common
properties of two stimuli (communalities) and of their differences. The organi-
zation is the same as in the last section. First, we introduce the idea, then we
clear all necessary prerequisites, list and discuss the measures used in this area
and, eventually, we group them and review the approach based on our findings.

The idea of similarity by counting is simple. We consider pairs of stimuli
that are represented by distinguishable, nameable properties (signs). These signs
are described by on-off values that indicate their presence in particular stimuli
(e.g. ’man smiles,’ ’car drives,’ etc.). Such on-off values are called predicates
or taxa. Similarity by counting is building a taxonomy on trees of predicates.
The fundamental hypothesis of similarity by counting (predicate-based similarity
measurement) is that similar stimuli will have many properties in common and
only show few differences. The job of the predicate-based similarity function is
to operationalize these many, few, etc.

It is interesting to note that the remedy for insufficient distance-based sim-
ilarity measurement is based on a simpler scale: distance values are at least
interval-scaled, predicates are nominal-scaled. However, this is only one side of
the coin. The simpler items are loaded with higher semantics (e.g. car, smiles
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above) and usually present in a larger number. As we explained in the first part
of the book, predicates can be the result of iterations of media understanding.
That is, the entire sophistication of a media understanding process is aggregated
in the on-off values. Furthermore, predicate descriptions are usually longer than
interval-scaled ones, i.e. feature space has a higher dimensionality. In summary,
the structurally simpler predicates are by no means semantically simpler.

As motivation for the predicate-based approach to similarity measurement
we would like to introduce the problem of analogical reasoning. Extensively
discussed in psychology, there is no measurement-based solution to this problem
of similarity perception. However, analogical reasoning can easily be modeled by
common properties. All that is required is a semantic bridge from the concepts
used in one part of the analogy to the concepts used in the other. Then, the
alignment of the communalities is straightforward. In the last section we will
see that this problem can also be solved by so-called transformational similarity
models.

We have to discuss three foundations of predicate-based similarity measures.
First, it appears advisable to investigate the major differences between distance-
based measurement and predicate-based measurement. Then, we have to set
predicate-based measurement in context with the problems of choice, norm the-
ory and Bayesian inference. Eventually, we have to deal with the practical
provision of predicates.

Taxonomic Thinking Thematic Thinking
Steered by Surface Features Steered by Deep Features
Considers Potential Similarity Considers Psychological Similarity
Uses Qualitative Reasoning Uses Quantitative Reasoning
Expressed by Predicates Expressed by Quantities
Based on Separable Stimuli Based on Integral Stimuli
Stimuli are Nominal-Scaled Stimuli are Interval-Scaled
Stimuli have High Diagnosticity Stimuli have Low Diagnosticity
Stimuli have Low Intensity Stimuli have High Intensity
Represented by L1 Norm Represented by L2 Norm

Table 28.4: Aspects of Taxonomic and Thematic Thinking.

Table 28.4 lists major differences of the predicate-based approach (left) and
the distance-based approach (right) as they were identified by psychologists. In
earlier chapters, we already introduced the terms taxonomic thinking for count-
ing of communalities and thematic thinking for global similarity measurement.
Hahn and Rascar have pointed out that taxonomic thinking is usually steered
by surface features, i.e. features that are obvious for the semantic cognition of
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humans. In contrast, thematic thinking is seen as the – often unconscious –
processing of hidden features. Wallach named the first type of similarity poten-
tial (because it is immediately available) and the other psychological (because
it cannot be defined/retrieved easily).

The fact that taxonomic thinking is based on counting is expressed in naming
it qualitative reasoning while we called distance-based measurement quantitative
reasoning. Below, we use these terms to distinguish the two approaches. Nec-
essarily, taxonomic thinking requires separable properties, e.g. predicates. The
quantities used for thematic reasoning are called integral features. The different
scales required for these two types of properties were already discussed. Tversky
points out that the diagnosticity (semantic value) will be higher for predicates
than for quantities while it will be the other way round for their intensity (sim-
ilarly to what McLuhan calls hot/cold). Eventually, Shepard has pointed out
that the first-order Minkowski distance is a good measure for the imitation of
taxonomic thinking while the Euclidean distance is adequate for quantitative
reasoning. We will return to this idea below.

In Chapter 23, we introduced norm theory and the idea that norms represent
human judgment about signs and relations between signs. Norm theory requires
a rational foundation of signs for the construction of distributions that represent
our model/experience of the world. Reasoning (e.g. similarity measurement) is
inference from this model. The similarity of this concept to Bayesian inference
is obvious. For example, mixture models employ the same model building, rep-
resentation and reasoning principles. In fact, we can see Bayesian inference as
an operationalization of norm theory. Predicates are in both models required
for the representation of the basic set of symbols (signs, relations). Since they
are available, they can of course be used for predicate-based measurement and
inference. Hence, the measures introduced below can also be interpreted in a
probabilistic context.

In Chapter 11, we introduced an iterative approach for the computation of
predicates. In a first round of media understanding, proto-predicates are derived
from integral descriptions by categorization. In further iterations, semantically
richer predicates are derived. Rogers and Tanimoto proposed an even simpler
approach. They suggest decision trees that split quantities into n on-off values.
For example, the length of trees in meters can easily be transferred to three
predicates shorter than 1m, between 1m and 3m, longer than 3m. In fact, this
approach is a very simple implementation of iterative media understanding, in
which a simple decision rule is used as the classifier.

The table in Appendix B.2 lists the remarkable number of predicate-based
similarity measures that were suggested during the last 140 years. Please note
that though the majority of the measures do, not all measures compute simi-
larities. The measurement is always based on the communalities and differences
of a pair of stimuli, which can be expressed by four variables a, b, c, d and the
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Figure 28.6: Types of Correspondences of Two Predicate-Based Stimuli.

dimensionality of the description vectors (number of predicates) K. Figure 28.6
explains the four types of correspondences for two media objects o1, o2 with
descriptions f1, f2.

• Variable a counts the number of predicates that are present (1) in both
objects (communalities).

• b counts the number of predicates that are present in o1 but not in o2.

• c counts the number of predicates that are present in o2 but not in o1.
The sum b+ c stands for the differences between the stimuli.

• Variable d counts the number of predicates that are not present in both
stimuli. Naturally, d is almost unlimited. Hence, this correspondence is
only used in few measures.

Furthermore, a+ b+ c+ d = K. Please refer to the appendix for the formal
definition of the four variables. The foundation on just four variables allows
for easier in-depth analysis of predicate-based measures than of quantitative
measures.

Before we discuss the concrete measures, we would like to mention the at-
tempt of Tversky to define an equivalent for the metric axioms in the world
of predicate-based similarity measurement. The monotone proximity structures
are a set of three axioms that have to hold for a predicate-based similarity mea-
sure in order to be reasonable. For objects oi with two-dimensional descriptions
(fi1, fi2) the first axiom – the dominance relation – is defined as follows.

m(f11, f22) < m(f11, f12),m(f12, f22) (28.2)

Each similarity value that is measured over both dimensions (objects, pred-
icates) must exceed the one-dimensional projections of the media objects and
the description elements. This axiom measures a property similar to the triangle
inequality, though it is less strict.
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m(f11, f21) < m(f31, f41) ⇐⇒ m(f12, f22) < m(f32, f42) (28.3)

The second axiom is the consistency axiom shown above. It requires that
the similarity measure must be consistent over all dimensions of feature space.
Inversion is not allowed. This axiom appears surprisingly strict for a similarity
measure. The practical applicability is questionable. The last axiom measures
transitivity.

f11|f21|f31 ∧ f21|f31|f41 ⇒ f11|f21|f41 ∧ f11|f31|f41 (28.4)

Here, f11|f21|f31 ≡ m(f11, f31) < m(f11, f21),m(f21, f31). This axiom in-
tegrates the AND-operator in the similarity measurement process. Logically
connected border elements cover all inner elements.

The practical application of the monotone proximity structures is limited.
Some of the measures in the Appendix (in particular, P6) fulfill the axioms,
others not. The entire set of measures falls in three groups.

• Co-occurrence measures that emphasize the communalities of two stimuli.

• Distance measures that focus on the differences between the stimuli.

• Contrasts that try to establish a balance between communalities and dif-
ferences.

Typical co-occurrence measures are P1, P2 and P5. These measures are strict
similarity measures. The arguably best-known distance measure is the Hamming
distance (P3). This measure is, for example, used in text understanding for the
measurement of the dissimilarity of pairs of words (e.g. of a wrongly spelled
word to its orthographically correct form). Another important distance measure
is P8, which is often used in cluster analysis algorithms. Eventually, frequently
employed contrasts are Tversky’s feature contrast model (P6), P9, P11 and P21.

The feature contrast model P6 is of particular interest for us. It has been
proposed by Tversky as a measure that fulfills the axioms of monotone prox-
imity structures and that combines the advantages of taxonomic and thematic
measurement. Tversky considered this measure the solution for the problems
of distance-based measurement. However, as we will see below, predicate-based
measurement – even the feature contrast model – cannot represent all aspects
of human similarity cognition.

Closer investigation of the table of measures shows that the characteristics
of a measure (in particular, a contrast measure) depend on the processing of b, c
and the way communalities and differences are related to each other. Measures
that use b.c instead of b+c will be sensitive for well-balanced differences between
the stimuli while the others will produce linear difference sums. Similarly, the
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contrast P7 reacts much stronger than P6 on imbalances between communali-
ties and differences. The general rule is that multiplication/division will create
an optimization criterion of squared shape (like in linear regression), while ad-
dition/subtraction will produce linear optimization criteria. The first form is
more discriminative while the second is less prone to outliers.

P1 P3P6

Co-Occurrences Feature Contrast Model Hamming Distance

Q2 Q1Q12

Dot Product Correlation Coefficient L1 Distance

Figure 28.7: Scale of Predicative Similarity Measures.

Figure 28.7 shows a scale of predicate-based measures and equivalences with
quantitative measures. This scale was computed in the same way as the one for
distance measures in the last section. Systematic search through feature space
(here, a, b, c, d) showed that the measures P1 and P3 are the endpoints of the
scale and that all other measures can be positioned in relation to these two. In
fact, each measure from the table in the appendix can be represented as a linear
combination of the two extremes. For example, the feature contrast model P6
lies exactly in the middle of the scale. Most other contrast measures are located
close to P6. The variances are generally low.

x y x ∩ y x \ y x.y x-y
1 1 1 0 1 0
1 0 0 1 0 1
0 1 0 0 0 0 (-1)
0 0 0 0 0 0

Table 28.5: Equivalences in Predicate Space between Operators for Nominal-
Scaled Data and Interval-Scaled Data.

However, Figure 28.7 provides more. We propose equivalence between the
co-occurrence counter P1 and the dot product Q2 (similarity measures) and of
the Hamming distance P3 and the city block distance Q1 (for different scales, of
course). This equivalence is given for predicate space – as shown in Table 28.5.
For binary description elements (the table shows all possible combinations) the
set operators and the linear/geometric operators are equivalent. In particular,
b+c =

∑
|x−y|. Hence, what we have is a scale of similarity measures that spans

from taxonomic thinking (P1, Q2) to thematic thinking (P3, P1) and explains all
other measures on the way. It can be applied directly on predicate descriptions
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but as well on quantitative descriptions. Then, the description elements need to
be normalized to the interval [0, 1] and the quantitative measures (Q1, Q2) have
to be used instead of the predicate measures. As we will see in the next section,
this scale defines an interesting dual process model.

Before we move to the next section, we would like to point out that predicate-
based similarity measurement helps to overcome the limitations of distance-based
measurement but that the approach suffers from innate insufficiencies. In par-
ticular, cognitive scientists could show that humans employ not just taxonomic
thinking even if they could. We use a mixture of taxonomic and thematic reason-
ing to derive our similarity judgments. Furthermore, psychologists could show
that under time pressure taxonomic thinking is suppressed. Then, quick the-
matic judgments are derived from stimuli with high intensity. Eventually, some
stimuli are integral by nature. Breaking such stimuli down into a sequence of
predicates is unlike the processing performed by the human brain.

We conclude that predicate-based similarity measurement stands on a sound
basis. The model is clear, well motivated and applicable wherever sufficiently
semantic descriptions are available. For predicate spaces we could even show the
equivalence of the space of qualitative measures and the space of quantitative
measures. However, psychological research results show that qualitative mea-
surement alone is not sufficient to measure similarity like humans do. What is
required are models that combine the advantages of measurement and counting.
Such models are discussed in the next section.

28.3 Dual Process Models

Dual Process Model (DPM) is a term used in psychology for a number of differ-
ent phenomena. We focus on the meaning of similarity measurement processes
that employ taxonomic thinking and thematic thinking simultaneously. In this
context, a DPM is a meta-measure that uses a qualitative measure and a quan-
titative one. Below, we describe the major approaches that were proposed so
far. First, we explain the idea and give some motivation. Then, we list and
discuss the existing models. Eventually, we derive a DPM that appears – from
the media understanding perspective – ideal and we explain its application.

It was an essential result of psychological similarity research of the late
1990ies that neither distance-based measurement nor predicate-based measure-
ment can simulate human similarity perception satisfactorily. Wisniewski was
one of the first to suggest the combination of thematic (for semantic proper-
ties) and taxonomic thinking (for syntactic properties, see Chapter 22) in the
similarity measurement process. Navarro pointed out that proper similarity mea-
surement requires both the consideration of discrete (separable) and continuous
(integral) aspects. Simmons and Estes discovered that the combination of the-
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matic and taxonomic thinking is not just an important part of human similarity
judgments but that the relative share of each aspect is a characteristic prop-
erty of the individual. That is, some people prefer rather taxonomic judgments
while others prefer thematic judgments. Extreme forms (e.g. purely taxonomic
thinking) hardly exist. There is a weak correlation between the form of simi-
larity measurement and gender: Woman prefer thematic judgments, men prefer
taxonomic judgments.

Aspect Taxonomic Combined Thematic
Stimuli Separable Both Integral
Descriptions Local Semi-Local Global
Measurement Dot Product Correlation L1 Norm
Counting Co-Occurrences Feature Contrast Hamming Distance
Convolution Positive Dual Process Model Negative

Table 28.6: Context of Dual Process Models.

Table 28.6 sets dual process models in context with what we already know
about human-like similarity measurement. Taxonomic thinking requires sepa-
rable stimuli which are typically represented by local descriptions. The scale
of similarity measurement suggests the dot product and the number of co-
occurrences as taxonomic measures. These measures correspond with positive
convolution. Negative convolution employs Minkowski distances or predicate-
based measures like the Hamming distance. These measures are employed on
integral stimuli represented by global descriptions.

Now, dual process models operate on both types of stimuli. The descriptions
required for this process can be described as semi-local. A typical quantitative
measure is the correlation coefficient. In the qualitative domain, the feature con-
trast model is representative. However, as we will see in the next paragraphs,
other, more flexible dual process models have been proposed by psychologists
and computer scientists that allow for the implementation of the individual tax-
onomic/thematic preference as a parameter.

The basic idea of the DPM should be clear by now: Combination of qualita-
tive and quantitative measurement in one process, enriched by a parameter that
expresses the individual preference for thematic or taxonomic judgments. Hence,
dual process models require interaction with the user. The personal preference
has to be identified by experiments (see below).

Before we go through the list of measures, we would like to point out that
the definition of dual process models requires a solution for the scaling prob-
lem: Qualitative measurement happens on nominal-scaled data, quantitative
measurement on interval-scaled data. In the last section, we showed that the
application of quantitative measures on predicates is straightforward. But what
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the other way around? The general solution is the application of fuzzy set opera-
tors. Such functions are ideal for the representation of quantities (probabilities,
belief scores, etc.) in logical systems such as predicate-based measurement pro-
cesses. Often, the required operators are defined for two vectors f1, f2 as follows.

f1 ∩ f2 = min(f1, f2) (28.5)
f1 ∪ f2 = max(f1, f2) (28.6)
¬f1 = 1− f1 (28.7)

A concrete DPM that employs fuzzy set operators is the fuzzy feature contrast
model (FFCM) discussed below. Before we come to this model, we would like
to introduce the DPM suggested by Navarro. After the FFCM and its derivates
we introduce the quantization model developed by the author.

Navarro’s DPM is a simple psychological model that does not consider gen-
eralization. The similarity function is defined as follows.

mnavarro = mpred −mdist (28.8)

Here, mpred is an appropriate measure for predicate-based similarity mea-
surement and mdist is a measure for distance-based measurement. The mea-
sures have to be selected by the user and have to be appropriate for the types
of stimuli that are processed. This DPM is a straightforward implementation of
the idea of Wisniewski. It employs the distance term directly on the predicate-
based measurement. Astonishing for a psychologically motivated model is that
the model neglects generalization. This shortcoming limits the applicability of
the model. It is mainly a showcase of the DPM idea.

The operators used in the fuzzy feature contrast model and the quantization
model – two models defined by computer scientists – are described in Appendix
B.4. The FFCM was defined by Santini and Jain as an extension of the feature
contrast model (FCM) for the quantitative domain. Since the FCM is a basic
DPM, the FFCM can also be considered being a DPM – though it was defined
before the idea of dual similarity measurement entered computer science. The
FFCM – in the corrected version of Tang, Fang, Du and Shi – employs the
following operators for the representation of the components a, b, c of the FCM.

a = w1

∑
min(f1i, f2i) (28.9)

b = w2

∑
max(f1i − f2i, 0) (28.10)

c = w3

∑
max(f2i − f1i, 0) (28.11)
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Here, f1i is the i-th element of the description of media object o1. The wi
are weights that define the thematic taxonomic profile of the user. The actual
measure is reached by applying these operators on the FCM model.

mffcm =w1

∑
min(f1i, f2i)

− w2

∑
max(f1i − f2i, 0)− w3

∑
max(f2i − f1i, 0) (28.12)

This version of the FFCM allows for asymmetric similarity measurement
(w2 6= w3) and arbitrary thematic taxonomic configurations. However, like
Navarro’s model, it does not consider generalization or the usage of arbitrary
functions for quantitative and qualitative measurement.

The quantization model (QM) defined in [84] goes one step further than the
FFCM by integrating the thematic taxonomic configuration in the definition
of the operators for a, b, c, d. Instead of fuzzy set operators, the QM suggests
statistical operators.

a =
∑

si, si =

{
f1i+f2i

2 if f1i+f2i
2 > 1− ε1

0 else
(28.13)

b =
∑

si, si =

{
f1i − f2i if 0 < f1i − f2i < ε2
0 else (28.14)

c =
∑

si, si =

{
f2i − f1i if 0 < f2i − f1i < ε2
0 else (28.15)

d =
∑

si, si =

{
f1i+f2i

2 if f1i+f2i
2 < ε1

0 else
(28.16)

Here, the input descriptions are defined as in the FFCM. The two thresholds
ε1, ε2 define the degree of thematic and taxonomic thinking. A high ε1 empha-
sizes taxonomic aspects. If ε2 is high, even large differences are considered, i.e.
thematic thinking is emphasized.

The actual similarity score depends on the similarities and differences of
the quantities and on the selected predicate-based measure. The QM can be
combined with the FCM but as well with any other predicate-based similarity
measure. In fact, it provides a kernel mapping for quantities that makes the
actual similarity measurement a meta-process.

None of the before-mentioned DPM considers generalization. Neither FFCM
nor QM allow for the usage of qualitative and quantitative measurement in one
similarity function. Both methods provide just mappings from the interval scale
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to the nominal scale. Since this state of affairs is unsatisfactory, we would like
to suggest a DPM that covers the most important aspects of human similarity
measurement.

mdpm = a.msep + (1− a)g(mint) (28.17)

Here, g is the generalization function (Gaussian, Tenenbaum or Shepard).
The thematic taxonomic configuration is defined by parameter a = k1

K ∈ [0, 1],
k1 + k2 = K are the numbers of separable and integral description elements, K
is used for normalization. The measures for separable and integral stimuli are
defined as follows.

msep = {P1, Q2} (28.18)
mint = {P3, Q1} (28.19)

That is, for qualitative measurement we allow measures P1 and P3 (without
normalization). For quantitative measurement, Q1 (city block metric), Q2 can
be used. Please note that parameter a defines the thematic taxonomic config-
uration of the user while the selection of P1/Q2 and P3/Q1 is just a technical
issue determined by the scale on which the description elements measure. Lin-
ear combinations of the measures by a are able to represent any other form of
similarity measurement. The actual selection of the measures will depend on the
data types of the description elements. On predicates, the qualitative measures
will be used, on quantities the others.

Reference Thematic Match Taxonomic Match

Figure 28.8: Thematic Taxonomic Test Triad.

The determination of a requires interaction with the user. We suggest the
implementation of a short questionnaire of, for example, ten triads of the form il-
lustrated in Figures 28.2 and 28.8. These triads force the user to decide whether
she prefers thematic judgments (similar size in Figure 28.8) or taxonomic judg-
ments (similar shape). After the test, the value for parameter a can be derived
from the average response.

We are positive that the application of the proposed DPM will improve the
quality of similarity measurement in media understanding applications signifi-
cantly. The thematic taxonomic imprint of the individual user is the essential
hidden parameter in this model. It has to be uncovered before it can be applied
successfully.
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28.4 Similarity as Alignment and Transformation

Dual process models are the similarity measurement procedures of choice today.
However, alternatives/extensions do exit. In this section, we would like to discuss
two models that are heavily discussed in psychological similarity research today:
structural alignment and transformational similarity. In the first part of the
section, we focus on alignment, in the second on transformation. As before,
we start with motivation/idea, introduce representative models and end with a
critical evaluation of the approach. This section closes with an integrated model
of the human-like similarity measurement micro process.

a b d e f f g g h

a b c d e f g h i

Figure 28.9: Structural Alignment Example.

Structural alignment was already discussed in Chapter 8. There, we named
all relevant models and methods. The key idea is homologization as illustrated
in Figure 28.9. Two sequences of separable stimuli are matched by dynamic
association as good as possible. The actual process has to implement forms of
insertion and deletion in a sequential optimization process – as, for example, in
dynamic time warping.

Figure 28.10: Communalities and (Non-)Alignable Differences ( c© CNBC ).

The principal relationships of description elements in structural alignment
are shown in Figure 28.10. Communalities are identical stimuli (signs) in both
objects. For example, the face of the anchor person is a – taxonomic – commu-
nality of both of the shown video frames. Alignable differences are elements that
are similar but not identical. The ticker on the top of the frame is an example
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for an alignable difference: Though the content is different in the two frames,
the concept is – thematically – the same. Eventually, non-alignable differences
are elements that are present in only one object. In the figure, the chart is
non-alignable as it is not present in the first object. Gentner and Markman
have discovered that for human beings the major difficulty lies in the handling
of non-alignable signs (neither taxonomic nor thematic). Furthermore, it has
been shown that human beings employ a top-down strategy in structural align-
ment. Such a divide and conquer strategy is also recommendable form machine
alignment (for example, as iterative media understanding).

The principal groups of structural alignment measures are probabilistic in-
ference methods (see Chapter 9), similarity meta models such as the Mallows
distances (e.g. Earth Mover’s Distance), the Hausdorff distance and related
supremal methods and graph matching (Chapter 24), which is likewise a typical
application of structural alignment. Other important applications are the align-
ment of gene strings (e.g. Needleman-Wunsch algorithm) and of speech patterns
(e.g. dynamic time warping).

The major shortcoming of structural alignment is – as Simmons pointed out –
its impotence to explain thematic relationships in the input data well. Structural
alignment requires separable stimuli on the level of the comparison process.
that is, the method compares signs. It is a dynamic association process that
employs similarity/distance measurement for the alignment of different signs but
it is not able to analyze complex integral stimuli. Hence, structural alignment
methods are not similarity measures but rather similarity meta models in which
quantitative, qualitative and dual process models can be embedded.

The idea of transformational similarity is that the degree of change required
to transform one stimulus into another is a measure for their similarity/distance.
Transformational similarity has, for example, been tested for word similarities
and artificial gene strings. The employed methods (e.g. edit distances) are
structurally similar to the dynamic association models employed in structural
alignment (e.g. dynamic time warping). The major difference is that transforma-
tional similarity is able to analyze (decompose) integral stimuli. In an iterative
process, the first representation is transformed by pre-defined operations into the
second one. That requires a sequence of analysis, segmentation, transformation
and recombination similar to the ones employed in iterated function systems (see
Chapter 25). In consequence, transformational similarity is well able to measure
thematic relationships but hardly able to recognize taxonomic relationships.

There are two fundamental models of transformational similarity that should
be discussed here.

• Levenshtein Metric

• Kolmogorov Complexity
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The Levenshtein metric measures the distance from one stimuli to another
by the number of insertation, deletion and substitution operations required for
transformation. One implementation in text understanding is the edit distance
that performs this process for strings (e.g. words). The application shows the
general similarity of transformational models to distance measurement, as the
alternative to the edit distance is the Hamming distance – a typical distance
measure.

Object 1 Object 2
Similarity as

Transformation

1st Ancestor

Archetype

Similarity as

Distance

Figure 28.11: From Transformation to Distance Measurement.

The Kolmogorov complexity is the shortest binary program required for the
transformation of one description into another. Alternatively, it can be defined
as the shortest description of the data represented in two stimuli. Figure 28.11
illustrates both ideas. The ancestors of the two objects are created by transfor-
mation. The archetype is their common basis. While for the archetype view the
solution is clear (the Lempel-Ziv-Welch algorithm for lossless compression), the
solution for the best binary program depends heavily on the set of instructions.
However, this view is a natural implementation of the idea of transformational
similarity: Transformation is necessarily an active process.

The major problem of the transformational models is the absence of an undis-
puted set of operations. For example, it is not clear why the Levenshtein metric
allows a substitution operator, which could also be implemented as a sequence
of insertions and deletions. In the Kolmogorov complexity, the basis for data
representation remains unclear. These degrees of freedom open a large space
of possibilities – an example for the curse of dimensionality. Any selection of
a point in this space must appear arbitrary. We doubt that a natural opti-
mum exists. Even Hahn, who supports the idea of transformational similarity
for text understanding, admits that the application of transformation models
requires the existence of an accepted transformation vocabulary. Otherwise, the
transformation will remain questionable.
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A simple yet practical implementation of transformational similarity is the
usage of iterated function systems for semantic comparison as described in Chap-
ter 25. There, the contracting transform will be composed of the transformation
vocabulary. The archetype will correspond to the self-similarity pattern T0.
Eventually, the number of iterations required for transformation is a distance
measure for the compared objects (inverse self-similarity).

Before we conclude this chapter, we would like to remark that structural
alignment and transformational similarity are very well suited for the evaluation
of spatial relationships in, for example, visual data. Unfortunately, hardly any
research has been performed in this area so far. However, we believe that the
transformational approach with iterated function systems could be used to iden-
tify the essential signs that are then related spatially by structural alignment.

Quantitative PredicativeDPM

AlignmentTransformation

Generalized

Fuzzyness

Quantifi-

cation

Embedding
Temporal

Distance

Figure 28.12: A Unified Similarity Measurement Model.

The conclusion of this chapter is a unified view of the similarity measure-
ment micro process. Figure 28.12 illustrates how the parts fit together. Trans-
formational similarity – however arbitrary the vocabulary used – is naturally a
distance measure. Hence, it can be integrated in the world of quantitative mea-
sures. These should be merged with predicate-based measures. The best avail-
able approach appears to be the model introduced in the last section (Equation
28.17). Eventually, the powerful dual process model that covers the capabilities
of qualitative, quantitative and transformational similarity can – if necessary –
be embedded in a dynamic alignment process.

This unified model offers optimal human-like similarity measurement. Hence,
it should support the representation of semantics and of polysemy as good as
possible. However, this field of research is an active frontier in psychology as it is
in computer science. The description of the state-of-the-art would require a book
of its own. We are positive, though, that the future will see no fundamentally
new way of similarity measurement. Rather, parameters and configurations
of the dual process model will be improved, transformational similarity might
become practically usable and the integration of the various parts in one model
– as sketched above – will happen.



Chapter 29

Neural
Media Understanding

Analyzes the building blocks of human cognition, explains how these are imitated
in artificial neural networks and discusses practical networks for description,
filtering and categorization, including the spike response mode, radial basis func-
tion networks and cascade correlation.

29.1 Neural Foundations

Man is the measure in media understanding. Therefore, the last step in this
introduction must lead back to man. We started this book with the requirements
of media understanding, introduced a large number of methods and explained
here and there further ingredients of human-centered media analysis. Machine
understanding is making progress, methods become more sophisticated and the
results are – in selected domains – already quite acceptable. However, man is
better, much better. Hence, the final question must be: How do we do it? What
do the neural networks look like that perform sensual analysis in the central
nervous system? How can we imitate the human neural solution?

The purpose of this chapter is to provide a first answer to these questions.
As we will see in this section, human knowledge of the brain is still limited. Cog-
nitive science is an active research frontier. Its results are of highest significance
for media understanding – as for many other domains –, because eventually, our
methods can only be successful if they imitate human behavior. Therefore, in
this first section we summarize major findings about natural neural networks.

545
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The second section explains the state-of-the-art of artificial neural networks and
discusses the limitations compared to natural nets. The last two sections deal
with (potential) artificial neural networks for description, filtering and catego-
rization. Along the main theme, we introduce relevant neural network techniques
such as radial basis function networks, cascade correlation and the spike response
model.

The remainder of this section is structured as follows. We start with a short
description of the neuron – the basic building block of the nervous system. Then,
we discuss communication principles of neurons and, eventually, we briefly inves-
tigate the different types of memories, retrieval mechanisms and temporal firing
patterns.

The human brain was already described in the first section of Chapter 23.
The enormous number of 1010 neurons is interconnected by 1013 connections.
Considering the size of the human brain, we have an average density of 105

neurons per cm3. Major nervous centers are the central nervous system (CNS)
and the peripheral nervous system. In the latter, the autonomic system controls
heartbeat, respiration, etc. The somatic system is, for example, responsible for
the control of body movement. The main task of the CNS is information pro-
cessing: sensual perception, pattern recognition, storage, retrieval and similarity
measurement.

Cognitive science could verify that the major functions of the CNS are or-
ganized in layers – for examples the centers described in Figure 23.1. Centers
are linked by broadband connections. The majority of the neural cells are either
responsible for sensual processing or motor control. Afferent cells propagate
sensual stimuli to the CNS where interneurons provide information processing
which causes efferent cells to trigger so-called effector cells attached to muscles.
It is interesting to note that most mammals require the majority of neurons for
motor control of large muscles (e.g. elephants). Furthermore, it could be shown
that the feedback provided by motor cells is an important input for the evolution
of the brain.

Apical Dendrites

Soma

Nuc-

leus

Axon

Basal Dendrites

Synapses

Figure 29.1: Structure of the Neuron.

Figure 29.1 illustrates the structure of the typical interneuron. The in-
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put (left) is a tree of dendrites (branches), the output a corresponding tree of
synapses. The soma is the central element with the nucleus at the core and the
axon as its endpoint. In the neuron, information is propagated as an electrical
potential. Between neurons (from synapse to dendrite) chemical neurotransmit-
ters are used (mostly, glutamate). The usage of neurotransmitters causes two
notable effects.

1. The speed of signal propagation is slowed down to about ten meters per
second.

2. The output signal is weighted by a factor w: typically 0 < w < 1 but it
may also be w > 1 (excitatory) or even w < 0 (inhibitory). In the latter
case, the output neuron’s influence will be reversed.

Each neuron is connected to about three per cent of its neighbors in a di-
ameter of one square millimeter. The average weight is only 1-5% of the input.
The weight of a synapse depends generally on the distance from the axon hill.
The nearer, the higher.

As we mentioned in Chapter 23, the typical action potential of the firing
neuron lies at 50-80mV. The soma is able to hold the electrical potential of
the input dendrites for a few milliseconds. Neural activity is limited to about
two milliseconds. Neurons can be distinguished by the activity patterns they
produce.

• Phasic neurons produce large bursts with low frequency.

• Tonic neurons produce low bursts with high frequency.

• So-called fast spiking neurons produce an intense spike train, i.e. combine
phasic and tonic behavior.

The latter type of neuron appears with significantly lower frequency than
the first two. Generally, the spike train produced by a neuron seams to be a
diagnostic description of the information it processes. Hence, artificial neural
networks of the latest generation take this type of information into account. We
will discuss this issue in the third section of this chapter.

Eventually, we would like to point out that neural networks are based on
the all-or-none principle. That is, a neuron will only fire, if all inputs together
exceed at a particular point of time the threshold. Otherwise, the inputs are
lost. This implies the need for recurrent structures and short-time memory in
neural networks as a buffer for synchronization.

Neural theory distinguishes three types of neural memories. Sensory memory
holds the information only for the first few milliseconds. Short-time memory is
able to hold the input for a few seconds. Every bit of information that exists



548 CHAPTER 29. NEURAL MEDIA UNDERSTANDING

longer in the CNS is held in the long-time memory. It appears probable that
long-time memory is implemented in the form of weighted connections while the
other forms could be (recurrent) propagation paths.

Stimulus/
Trigger

Memory Generalized
Response

f
w

w.f < ε
w̄

Figure 29.2: Generalizing Long-Time Memory Principle.

Figure 29.2 illustrates a long-time memory that is based on the squared op-
timization criterion. The memory is represented by the weight vector w that
connects the input f (e.g. a query) with the generalized response w̄. If the
threshold ε of the memory neuron (the second one) is set ε → w2 then only
stimuli f → w will be able to trigger a response. Hence, only stimuli f simi-
lar to the ’hardcoded’ weights w will be able to retrieve generalized responses
(norms) from the memory. This model can easily be constructed by input pat-
terns in a short-time memory and easily be extended to arbitrary memory sizes
by parallelization. We believe that this model is a nice explanation of long-time
memory and the generalization principle. It would also explain the near constant
growth of connections (w) in the CNS throughout life.

Eventually, it appears natural that neural processing over time is based on
similarity measurement (convolution). As we mentioned in earlier chapters, the
change of aspect (oscillation in sign recognition) described by Wittgenstein and
others can be described by a race situation in which two long-time memory pat-
terns are alternatively triggered by the input stimulus. The oscillation could be
caused by flickering perceptual stimuli that cause almost identical squared simi-
larities in the described long-time memory. In consequence, the perception of the
stimulus would oscillate. As a consequence, the temporal pattern (spike train,
a form of attractor) that is produced by an input appears to be an interesting
description of the recognition process.

Conclusion: The central nervous system is highly complex in structure and
parallel dynamics. The machines of today are clearly unable to imitate the full
richness of this apparatus. Still, some central functions are already understood
today. How these can be modeled in computers is the topic of the next section.
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29.2 Artificial Neural Networks

It is not our ambition to provide a full introduction into the field of artificial
neural networks (ANN) in this section. Rather, we would like to introduce all
concepts required to understand the neural networks for description and catego-
rization presented in the last two sections. These concepts are all based on and
imitate particular characteristics of natural neural networks. The question: what
is essential in neural networks? has been discussed intensively during the last
decades. Over time, the models have grown more complex. This development is
reflected below.

First, we describe the representation of the neuron in ANN, aspects of the
architecture and some early network types that were of paramount importance
in the evolution of ANN. Then, we discuss learning strategies and limitations of
learning and categorization for particular network types. The two main concepts
introduced below are the McCulloch-Pitts neuronal model and backpropagation
learning.

Neural networks can be distinguished by a number of properties of which the
following three appear most important to us.

• Direction of the flow of information in the network

• Layer structure and complexity

• Type of the employed stimulus response model

The direction of the flow of information determines the network type. Most
ANN are either feed-forward, feed-back or recurrent networks. Of the latter type
of network we already encountered examples in earlier chapters. The Hopfield
network and the Boltzmann machine are recurrent networks, because informa-
tion flows back and forth in them until a stable state is reached.

The self-organizing map introduced in Chapter 19 is an example for a feed-
forward network. Both in learning and categorization a strict feed-forward strat-
egy is employed. The response of the network on the input is in both cases not
used to refine the network structure or the weights. In the next section, we will
briefly discuss the neural structure of the self-organizing map.

The majority of ANN, however, are feed-back networks. We already encoun-
tered the perceptron as one archetype of the support vector machine. Below, we
discuss this type of network in detail, because it can be used as the foundation
for media description and neural categorization networks.

ANN are typically differentiated by their layer structure into single-layer
and multi-layer networks. In a single-layer network, the output layer is directly
connected to the input layer (the input layer is not counted). Such networks
are typically fully connected, i.e. every input node is connected to each output
node. The self-organizing map is an example for this type of network.
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Input Correlation Aggregation Quantization Output

Figure 29.3: Multi-Layer Neural Network Example.

Figure 29.3 shows an example for a multi-layer network. The input layer and
the output layer are separated by two hidden layers. As we can see, the complex-
ity of the connections of the layers varies widely. While the input layer and the
first hidden layer are fully connected (high complexity, high computational effort
required), the two hidden layers are only connected by a pair-wise aggregation
operation. Eventually, the second hidden layer and the output layer are linearly
connected (low complexity). Semantically, the full connection performs a corre-
lation operation. The two hidden layers aggregate the results locally. The linear
connection performs just a quantization operation. These semantic meanings
point already in the direction of the ideas developed in the next two sections:
We will try to associate the building blocks of description and categorization
with particular network types and connections.

fi
wi x =∑

fiwi
f̄i = g(x)

Figure 29.4: Artificial Neuron.

Figure 29.4 shows an artificial neuron – the basic building block of all ANN.
The synapses and dendrites are represented by input values fi and input weights
wi. The soma performs an aggregation operation of the weighted inputs. The
nucleus contains an activation function g that transforms the input f into the
output f̄ in an all-or-nothing fashion. Three important activation functions are
the step function (Equation 29.1), the sigmoid learning function (29.2) and the
perceptron function (29.3).
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g(x) =
{

1 if x ≥ ε
0 else (29.1)

=
1

1 + e−ax
(29.2)

=
ex − e−x

ex + e−x
(29.3)

Here, a is a scaling parameter and ε is the activation threshold. Based on
these activation functions (responses), layer structures and directions of flow, we
can define a number of classical ANN. The first is the McCulloch-Pitts model. It
defines a two-layer network that employs a step activation function. This model
can be used for simple categorization purposes (e.g. regression). However, its
main value lies in being an early bird.

Weight Vector

Figure 29.5: Perceptron Example.

Figure 29.5 illustrates the application of a perceptron neural network. The
perceptron is a McCulloch-Pitts network that uses a feed-back algorithm for
learning. Since the standard perceptron is not able to learn particular input-
output patterns (XOR problem), the perceptron is sometimes extended by one
hidden layer. The perceptron is practically usable: It provides a separating
hyperplane (defined by the weight vector between input and output layer) that
can be used for binary categorization and regression. As mentioned above, it was
one of Vapnik’s starting points in the development of the support vector machine,
which is essentially a perceptron with a determined optimal orientation of the
separating hyperplane.

Despite its generally interesting properties, the perceptron is hardly used in
media understanding (and other domains) today. Next to the two named disad-
vantages (XOR learning problem, suboptimal goal definition) the perceptron is
not able to learn a good separator for overlapping data. The simple layer struc-
ture does not allow for the definition of elastic mechanisms like slack variables.
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Hence, feed-back networks with three or four layers are more frequently used in
practice today.

For learning in ANN we have two fundamental options: supervised or un-
supervised. The latter type is employed in feed-forward networks. There, the
optimization criterion has to be given implicitly in the learning algorithm. For
example, in the self-organizing map it is given as minimizing the quantization
error by adaptation of the codebook vectors.

Feed-back networks and recurrent networks usually employ supervised learn-
ing. We have already sketched the simple learning procedure of the Hopfield
network and the more sophisticated one of the Boltzmann machine. Generally,
three supervised learning types are practically relevant.

1. Propagation: The new weights w are set by a linear function l of the
error f̄ − fgt and a learning rate a. Here, fgt is the output that should
according to the ground truth (supervisor) be produced for input f . That
is, w = a.l(f̄ − fgt). Through the learning rate a the error is propagated
from the output back through the network.

2. Gradient ascent uses a model similar to propagation, but l is a smooth
function and ∂l

∂w is employed to reach the optimal weights quickly.

3. Hebb learning is similar to gradient ascent. The correspondence of inputs
and outputs is reached by setting w = a.l(fi.fj). That is, we use the
covariance (outer product) of the input vectors to define their weights. Of
course, this method works only if there is similarity (correlation) between
the input and output patterns.

Measured ErrorPropagated Error

Figure 29.6: Principle of Backpropagation.

Supervised multi-layer perceptron-like networks usually employ the backprop-
agation algorithm for learning. It is based on the propagation principle and
employs the following steps.
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1. Select an input vector (randomly) from the training set and feed it into
the network.

2. Compute the output and measure the error f̄ − fgt.

3. If the error is above a pre-defined threshold, continue with the next step.
Otherwise, stop learning.

4. Feed the error back into the network by adapting the last layer first by a
fraction of the error, weighted by the learning rate.

5. Propagated the rest of the error back through the network. Figure 29.6
shows how this procedure distributes the refinement quantities over the
entire network.

The backpropagation algorithm converges. Quantitative experiments con-
ducted in the same fashion as those in Chapter 27 showed that there is no ground
truth configuration that would cause oscillation or even chaotic behavior.

There are several ways to describe the capacity and complexity of an ANN.
One is the layer structure. Another is the computation of the information-
theoretic complexity in the form of the entropy. After training, the quality of
the matching of input-output patterns can be estimated as p(f̄ |f). These values
can be employed to compute the conditional entropy of the network which is
a measure for its complexity and generalization power. Furthermore, the VC
dimension of ANN can be estimated as follows.

hANN ≤ a.W. logN (29.4)

Here, W is the number of weights, N is the number of neurons in the model
and a ∈ [0, 1] is a contracting weight. That is, the capacity of an ANN will rise
most effectively with more connections (like the human brain does) and only
little with additional neurons.

In conclusion, there are various simplifications in artificial neural networks
compared to natural ones. We can deal only with few simplified neurons, few
layers, simplified learning procedures and simple application patterns. For this
reason and because the effect of an ANN is often hard to analyze (if it works: why
does it work?), they are despite their generally good categorization performance
seldom used in media understanding applications.

However, neuralization must necessarily be the future research frontier of
media understanding. Man can do it, man is the measure, therefore, science
has to find a way. The next two sections are a first step in this direction:
We introduce and suggest a number of networks for the representation of the
fundamental media description and categorization problems.
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29.3 Neural Description and Filtering

This section deals with neural description processes. We first introduce the
spike response model as a general way of media description by neural processing.
Then, we suggest neural equivalents for the building blocks of feature transfor-
mation. Eventually, we discuss an ANN for information filtering that extends
the capabilities of the Hopfield network: adaptive resonance theory.

ANN are frequently used for categorization but hardly ever for feature trans-
formation/summarization. The first two generations of neural networks consid-
ered only neuronal aspects (activation function) and synaptic aspects (weight-
ing). With these tools it is possible to implement effective regressors. For sum-
marization, however, a description of the (temporal) process is also required.
This – statistical – view is provided by spiking neural networks. Hence, we
describe this type of network in this section.

The mental representations of media objects in the human brain are con-
structed by neural processes. Stimuli are transformed to signs, statistically
aggregated to norms and memorized as references. In the visual domain, for
example, a sequence of saccadic scanning, color, depth and form detection (e.g.
by on-off ganglia cells) represents the first steps of analysis. Later, low-level
descriptions are grouped and organized, matched with memories of previous
sensations and eventually laid down in a semantic storage that is enriched with
language information and emotions.

A first, very general approach to imitate this behavior of the human brain
is based on the statistical description of temporal recognition processes in the
neural network. The idea is simple. Instead of considering the output of a
multi-layer network, we focus on the characteristics of the activation functions.
The bursts over time (spikes, spike train) caused by some input stimulus may
be adequate descriptions of the input object, if the network performs reasonable
summarization operations. Hence, we require two things: ANN components for
summarization and an ANN model that provides the description. The remainder
of this section aims at providing these components.

The spike response model (SRM) is an early approach for the description of
neural behavior. The spike train fi of one neuron is defined as follows.

fi = {ti|gi(t) ≥ ε} (29.5)

We consider the spike train to be a description of the input data. It consists
of all times ti when the aggregated input of the neuron gi triggered a burst. ε
is the threshold of the employed step function. The state g of neuron i at time
t is determined as follows.

gi(t) =
∑
ti∈fi

a1(t− ti) +
∑
j

∑
tj

wija2(t− tj) (29.6)
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The state (membrane potential) is determined by two components (terms).
The first summarizes all earlier bursts and weights them with respect to the time
passed since the burst. The left part of Figure 29.7 describes function a1. The
second term summarizes over all inputs j of neuron i. For these, all earlier bursts
are summed up and downweighted by function a2 (right part of the figure). The
weights wij represent the synaptic behavior.

The state equation is used to determine the state of each neuron at each
relevant point of time. The result of computation is a set of spikes for each
neuron. The superset over all neurons describes the input media object.

Reset (a1)
Propagation
Effect (a2)

ti tj

Figure 29.7: Spike Response Model Functions.

´
The second ingredient required for a neural description network is a neural-

ization of the building blocks of feature transformation. Once provided, complex
feature transformations can be neuralized by simple recombination of the build-
ing blocks on different scales. The components suggested in the next paragraphs
are based on signal propagation as explained in the second section. Where nec-
essary, we use inhibition (that is, negative weighting). This function is reached
in the human brain by the usage of a special neurotransmitter. In the ANN it
is sufficient to use −w instead of a normal weight.

In Chapter 11, we defined four building blocks of feature transformation:
localization, interpretation, reduction (quantization) and aggregation. Of these,
localization is a natural property of neural networks. Neural structures can
process the input patterns in no other way than local and parallel. Examples
for quantization and aggregation have already been provided: Figure 29.3 shows
examples for both functions.

The only non-trivial building block is interpretation (cross-/autocorrelation).
For this building block, Figure 29.8 shows a neural equivalent. The two input
stimuli (of which one may be a template from memory or a piece of the same
signal that provides the first stimulus) are processed in two steps. In the first,
corresponding inputs are aggregated. In the second step, the locally aggregated
(convoluted) components are globally aggregated. The design of the convolution
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Stimulus 1 Stimulus 2,
Template

Result

Figure 29.8: Neural Interpretation/Convolution Pattern.

operator is discussed in the next section as it is also the equivalent for the
similarity measurement building block of categorization.

These building blocks can be used to construct neural representations of the
major feature transformations. For the perception of visual stimuli, these should
include color and form descriptions, relationships of symbols, movement paths
and depth perception. As Kandel and Wurtz wrote in [186], these are also the
major stimuli processed by the human brain (blobs, stripes, interblobs, inter-
stripes). In the audio domain, the building blocks can be used to represent
loudness and pitch perception, rhythm and timbre but as well advanced psy-
chophysical concepts such sensory pleasantness. Of course, the same idea could
also be applied to artificial stimuli that are processed by the brain only in the
form of images.

We would like to close this section with a short look on neural methods
for information filtering. In the second part, we already encountered dynamic
quantization methods such as the Hopfield network and the Boltzmann machine.
Formally, these methods are recurrent networks. A more sophisticated neural
network for general information filtering is provided by the adaptive resonance
theory (ART). This theory serves two purposes. On the one hand it describes hu-
man behavior in pattern learning and generalization and on the other it provides
a practically usable model for convergent filtering.

The fundamental structure of ART is illustrated in Figure 29.9. The network
consists of two layers (traditionally, named F1 and F2) which are fully connected.
Information flows back and forth between the layers. Hence, ART is a recurrent
network. The learning/categorization process of an input pattern consists of
two steps. In the first, an input signal is provided through F1 and propagated
by weights W to the output layer. In the output layer, the neuron with the
maximal membrane potential is considered the winning node. All others are set
to zero. In the second step, the signal is propagated back by weights Z to F1
and this resonance is used to measure the quality of the representation process.
If the difference of the original input and the resonance is beyond a predefined
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Input Layer (F1)

Output Layer (F2)

Quantization (W)Resonance (Z)

Figure 29.9: Adaptive Resonance Theory Network.

threshold, the process is repeated and the second-best neuron in F2 is chosen as
the winning node, and so on. If no suitable neuron in F2 can be identified, a free
neuron is chosen and the weights W,Z are set according to the input pattern.
In this respect, the ART implements the generalized long-time memory model
introduced in the first section.

The adaptive resonance theory is an interesting information filtering model.
The two-layer structure allows for more efficient convergent filtering than in the
Hopfield network. Several variants of ART exist that provide different function-
ality. We believe that this model could very well be used for information filtering
in media understanding.

29.4 Neural Networks for Categorization

In this last section, we return to the ’natural’ application of neural networks:
categorization, the semantic interpretation of input patterns. First we review the
neural definition of the self-organizing map of which the algorithm was already
introduced in the second part. Then, we introduce radial basis function networks
as typical static ANN for categorization and cascade correlation as an example
for a dynamic ANN. Eventually, we do for categorization what we did for feature
transformation in the last section: we define the building blocks – in particular,
similarity measurement – neurally. On this ground, arbitrary machine learning
methods can be assembled from the neural building blocks.

Figure 29.10 illustrates the neural network of the self-organizing map. It is
a fully connected single-layer feed-forward network. The output classes cj are,
as mentioned in Chapter 19, organized in a rectangular or hexagonal grid. The
weights wij that end in one class cj define one codebook vector. Learning and
application are defined as described in the second part.

A more complex neural network for categorization is illustrated in Figure
29.11. The Radial basis function (RBF) network is related to the self-organizing
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fi cjwij

Figure 29.10: Self-Organizing Map Neural Network.
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Figure 29.11: Radial Basis Functions Network.

map as the first part of the network has the same structure and serves the
same purpose. The hidden layer and the output layer implement an aggregation
pattern. The output of an RBF network is computed by the following rule.

c =
∑
j

wjgj
(
m(f, εj)

)
(29.7)

That is, the class c is the neural sum of all codebook vectors represented
by the so-called centers εj with weights wj . The input f is compared (distance
m) to all centers – as in the self-organizing map by the Euclidean distance.
However, different to this network, in the second step not the node with minimal
distance is considered the winning node. Instead, all centers contribute to the
final classification. In this respect, the RBF network is similar to boosting. The
activation function is usually a Gaussian generalization function.

gj(x) = e
− x2

2σj
2 (29.8)

Sometimes, the method of inverse multiquadrates with a free parameter a is
used instead.
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gj(x) =
1√

x2 + a
(29.9)

As the authors of [171] point out, the RBF network is a nice example for a
machine learning method that is heavily influenced by the results of psychological
similarity research. The activation function is similar to the one suggested by
Shepard for generalization. The association of input vectors and centers is based
on Minkowski distances. There is also a link to the theory of ergodic systems.
The RBF network defines an algebra over the input space f . The receptive field
of center εi is defined as

{
f
∣∣gi(m(f, εi)) ≥ a

}
. It is, therefore, not surprising

that RBF networks are, for example, used to learn chaotic time series such as
those produced by the logistic map.

Initialization of an RBF network based on ground truth is a four step process.

1. Select the type of the activation function g.

2. Select centers εj from the samples (e.g. mean values over groups).

3. If the activation function is Gaussian, set the standard deviation (spread
parameter) as the second order moment (variance) of the vectors that
contribute to one center vector.

4. Set the wi so that they minimize the squared differences of centers and
ground truth.

Additionally, the center vectors and weights can be refined iteratively (e.g.
by expectation maximization).

Self-organizing map and radial basis function network are – as all other ANN
considered so far – static methods. There are, however, also dynamic methods
in which the network structure is adapted during learning (over time). One
example that is of particular appeal for categorization is cascade correlation
(CC). This method shows striking parallels to boosting – with all advantages
and disadvantages.

Generally, a CC network is a fully connected multi-layer feed-forward net-
work. Figure 29.12 gives examples. Goal is perfect categorization of input
vectors f into classes c, formally:∑

j

m
(
gt(fj), cj

)
→ min (29.10)

Please note that here j iterates over the training set. Over all input vectors
the Euclidean distances m from the ground truth values gt to the class labels
c of the winning node computed by the CC network should be minimal (least
squared error). The learning process that should achieve this goal takes the
following steps.
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fi wij cj fi wij cj w̄ij c̄j

Figure 29.12: Cascade Correlation Example: Initial State (left), after one Iter-
ation (right).

1. Find weights wij that optimize the criterion given above. The classes are
defined as cj =

∑
i wijfi for all input vectors. Here, i iterates over the

description elements. This optimization is usually achieved by random
initialization and expectation maximization. The result is equivalent to
the left part of Figure 29.12.

2. If the squared error is beyond a predefined threshold, add a hidden layer
of weights w̄ with c̄j =

∑
i w̄ijci that minimizes the squared error even

better. Again, the w̄ are identified by expectation maximization. The
result is equivalent to the right part of Figure 29.12.

3. If the error is still beyond the threshold, return to Step 2.

CC networks are able to model any input data. The price is high com-
putational complexity (expectation maximization for each new fully connected
layer) and a high risk of overfitting. Still, CC networks are practically used, for
example, for the learning of patterns and templates.

We would like to close this section with suggestions on how categorization
methods can be neuralized. As for feature transformations, we suggest neural
models for the building blocks of categorization. Concrete neural classifiers can
then be assembled from the building blocks.

The four building blocks are quantization, estimation, learning and similarity
measurement. Quantization has already been discussed in the previous section.
Estimation for model building is a combination of quantization and aggregation
– of course, similar to media description. Learning and refinement can best
be modeled by recurrent patterns. In the second part, we pointed out that
recurrent networks such as the Hopfield network are structurally identical to
Markov processes. Hence, it appears reasonable to use these neural patterns for
the representation of learning patterns.

The only building block that requires a sophisticated neural representation
is similarity measurement. In the last chapter, we concluded that the currently
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Figure 29.13: Neural Dual Process Model.

best similarity measure is a dual process model (DPM) of taxonomic an the-
matic thinking. Hence, we require positive and negative convolution for its
representation. Figure 29.13 illustrates a straightforward approach. The simi-
larity measurement DPM is a two step neural pattern. In the first step, positive
convolution (as described in the previous section) and distance measurement are
performed separately. Distance measurement is reached by inhibition of the sec-
ond stimulus f2 by the first. In natural neural networks, this is reached by the
selection of specific neurotransmitters. In ANN, this behavior can be imitated
by negative weights. Eventually, the results of positive and negative convolu-
tion are merged – possibly after generalizing quantization of the distance score
– in the second step. We are convinced that this pattern provides a satisfactory
explanation of dual process similarity measures in neural networks.

In conclusion, we provide a number of practically applicable artificial neural
networks for media description and categorization in this chapter. Moreover, we
suggest neural equivalents for the building blocks of feature transformation and
the classifiers. These patterns can be used to build neural equivalents of the
media understanding methods introduced in this book.

ANN categorization methods belong to the group of separators (e.g. the
perceptron). The general effect of neural categorization methods is positive
where semantics are concerned. However, this is paid with bad performance
due to inadequate computation architectures of the machines employed today.
Another problem is the dimensionality of the required solutions as ANN methods
open large spaces of potential parameters and values.

Still, we believe that neuralization will be one frontier of future media under-
standing research. Since we endeavor to imitate an essential cognitive process of
man, it is self-evident that the methods should be imitated as well. We see the
presented neural building blocks as a first step in this direction. However, the
frontier of neural media understanding will probably not be pushed too far in the
near future. The reason is technical: With the present computer architectures,
neural networks can only be simulated very slowly. Algorithmic approaches are
currently clearly superior.

This chapter closes the practical introduction to media understanding pro-
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vided by this book. The last chapter reviews all introduced methods, sets them
into context and derives the essential messages from the text. Eventually, we
provide an outlook on the media understanding challenges of the near future.



Chapter 30

Finale and Future

Summarizes the findings of the book, emphasizes the most important points, es-
timates the practical applicability of some important ideas and sketches a vision
of future multimedia information retrieval research.

30.1 Summary

Like the Chapters 11 and 21, this one is dedicated to summarization and re-
flection. We repeat the most important findings – this time over all three parts
– and endeavor to set them into context. The organization of all four sections
follows the big picture, i.e. first come media-related issues, then feature trans-
formations, information filtering and, eventually, categorization and evaluation.

This first section is a plain summary. The essential methods are listed and
references to earlier chapters are given. In the second section, we gather the con-
clusions that are of paramount importance for practical multimedia information
retrieval. The third section looks critically on the state-of-the-art of media un-
derstanding. Furthermore, we investigate the potentials of currently developed
methods. In the last section, we give an outlook on what will happen next in
media retrieval, what is likely to happen and what is rather improbable.

As one major asset of this first section, we provide three lists of methods
that have high relevance in practical media understanding. The lists are more
than just indices. We set terms into a hierarchical context and provide links to
the chapters where they were primarily discussed.

On the general level, we have endeavored to develop a uniform theory of
multimedia information retrieval that works well for media types as different as

563
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video, text and bioinformation. Major components of this theory are the bigger
picture of media understanding, a list of major interpretation problems, a com-
mon notion of feature spaces and a unifying notation for data and operations.
The bottom line of the bigger picture is that media understanding is a three
step process of summarization (feature transformation), redundancy elimination
(filtering) and contextualization (categorization). The interpretation problems
range from the psychological ability to represent semantics to technical prob-
lems such as computational performance. The definition of a common feature
space requires most of all an understanding of scales, spaces and of measurement
therein.

Feature Transformation: Essential Methods

• Feature Spaces (Chapter 7)

• Cognition, Perception, Psychophysics
(Chapter 23)

• Transformations (Chapter 12)

• Temporal Media Description

• Amplitude Summarization

• Short-Time Energy (Chapter 4)

• Sone Features (Chapter 13)

• Frequency Summarization

• Zero Crossings Rate (Chapter 4)

• Mel Frequency Cepstral
Coefficients (Chapter 13)

• Autocorrelation

• Correlogram (Chapter 4)

• Cross-Spectral Density (Chapter 4)

• Linear Prediction (Chapter 4)

• Perceptual Linear Prediction
(Chapter 13)

• Template Matching (Chapter 24)

• Spatial Media Description

• Color Description

• Dominant Colors (Chapter 5)

• Color Histogram (Chapter 5)

• Texture Description

• Moments (Chapter 5)

• Multi-Resolution Analysis
(Chapter 12)

• Form Description

• Edges (Chapter 5)

• Local Description

• Visual Keywords (Chapter 5)

• Scale Spaces (Chapter 14)

• Interest Point Detection
(Chapter 14)

• Gradient-Based Description
(Chapter 14)

• Templates

• Active Contours (Chapter 24)

• Curvature Scale Spaces
(Chapter 24)

• Spatiotemporal Media Description

• Temporal Segmentation (Chapter 15)

• Optical Flow

• Motion Activity (Chapter 15)

• Object Motion, Motion
Trajectories (Chapter 15)

• Camera Motion (Chapter 15)

• Symbolic Media Description

• Summarization (Chapter 6)

• Histogram Building, Bags of Words
(Chapter 6)

• Structural Alignment (Chapter 8)
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A second general ingredient of media understanding is knowledge about hu-
man perception and cognition. Though not all media (senses) considered in this
book are natural (e.g. text), human perception is of highest interest for us, be-
cause we aim at imitating its way of data processing. Major topics discussed in
this area include the physiology of the brain, processing paths in vision and hear-
ing, norm theory and psychophysics (Mel scale, Bark scale, Steven’s exponent,
etc.).

We have explained a multitude of feature transformation methods that serve
the purpose of media summarization. For temporal media (e.g. audio, biosignals,
stock data) we have suggested summarization methods (e.g. short-time energy,
zero crossings, mel frequency cepstral coefficients) and autocorrelation methods
(linear predictive coding, correlogram, etc.). Template matching is also used
(e.g. in technical chart analysis).

For spatial media (images), we have suggested methods for color summa-
rization (dominant colors, color histograms), descriptions of surfaces (texture
moments), of forms (active contours, shape moments, etc.) and of super-local
components. In the latter area, interest point detectors are state-of-the-art.
Their description by gradient neighborhoods and their aggregation in bags of
features has been discussed in the second part of the book.

Video is the only spatiotemporal data type considered in multimedia infor-
mation retrieval. We have encountered methods for scene segmentation (e.g.
twin comparison). The essential description of motion is the optical flow. Of the
several approaches that exist for flow computation, we have recommended the
Lucas-Kanade approach. It can be used to measure the amount of object move-
ment, movement paths (motion trajectories) and global motion such as camera
motion.

For the summarization of symbolic media, we have suggested lossy com-
pression, histogram-based methods (n-grams) and several structural alignment
procedures with coarse representations.

Information Filtering: Essential Methods

• Description Fusion (Chapter 7)

• Redundancy Elimination

• Principal Components Analysis
(Chapter 7)

• Singular Value Decomposition
(Chapter 16)

• Isomap (Chapter 16)

• Feature Selection (Chapter 16)

• Quantization

• Normalization (Chapter 7)

• Kalman Filtering (Chapter 26)

• Linear Vector Quantization (Chapter
26)

• Hopfield Network (Chapter 26)

The information filtering methods discussed in this book serve three pur-
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poses: merging of media descriptions, elimination of redundancies and quan-
tization of description elements. In the first area, we have encountered static
merging as well as early, late and hybrid fusion. The major method for re-
dundancy elimination is factor analysis. Singular value decomposition and the
Isomap approach are two related methods. Simple feature selection serves a
similar purpose. Quantization methods range from simple normalization to con-
vergence filters such as the Kalman filter, vector quantization and recurrent
neural networks.

Categorization: Essential Methods

• Learning Theory

• Concept Theories (Chapter 17)

• Convergence, Dynamical Behavior
(Chapter 27)

• Generalization, Semantic Scale
(Chapter 27)

• Training, Limits of Learning (Chapter
17)

• Micro Processes and Macro Processes
(Chapter 17)

• Macro Processes

• Hedgers

• Metric Approaches

• Cluster Analysis (Chapter 8)

• Vector Space Model (Chapter 8)

• K-Nearest Neighbor (Chapter 8)

• K-Means (Chapter 8)

• Self-Organizing Map (Chapter
19)

• Mixture Models, Norms (Chapter
19)

• Separators

• Decision Trees, Random Forests
(Chapter 8)

• Bayesian Networks

• Bayes Classifier (Chapter 9)

• Markov Processes (Chapter 9)

• Kernel-Based Methods

• Support Vector Machine
(Chapter 18)

• Linear Discriminant Analysis
(Chapter 18)

• Artificial Neural Networks

• Perceptron (Chapter 29)

• Radial Basis Function Network
(Chapter 29)

• Cascade Correlation (Chapter
29)

• Spike Response Model (Chapter
29)

• Ensemble Methods, Boosting (Chapter
19)

• Micro Processes

• Convolution, Kernels (Chapter 18)

• Predicate-Based Measures (Chapter
28)

• Dual Process Models (Chapter 28)

• Similarity Meta Models (Chapter 8)

• Evaluation

• Cross Validation (Chapter 20)

• Recall, Precision, F1 Score (Chapter
10)

• Interestingness Measures, Entropy
(Chapter 20)

• Receiver Operating Characteristic
Curves (Chapter 20)

Almost anything that was ever developed in machine learning is used in
multimedia information retrieval. That is why we have described a multitude of
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methods. On the theoretical side, we have discussed the particulars of learning
processes and of generalization. Concept theories have helped us to understand
the principal solutions for contextualization. We have introduced several tools
for the differentiation of classifiers: into separators and hedgers, micro processes
and macro processes, rigid versus overfitting methods, etc. The limits of learning
have been described in terms of VC theory, PAC theory and dynamical systems
theory. We have clustered the fundamental types of micro processes, derived
a portfolio of categorization methods and suggested best methods for standard
applications.

We have laid particular weight on the explanation of context and semantic
meaning. As we described in the second part, semantic understanding is the
consequence of setting media summaries into the context of an application. Dif-
ferent types of context were discussed. Media theory and semiotics were used
to analyze and understand the input media and to derive the (hidden) semantic
messages conveyed by them.

On the macro level, we have endeavored to provide an exhaustive list of
presently employed machine learning techniques. We discussed tree-based ap-
proaches such as decision trees, random forests and cluster analysis. The latter
method leads the way to the distance-based methods. This bag of methods in-
cludes the vector space model, k-nearest neighbor categorization, k-means and
the self-organizing map. The last classifier provides a bridge to the artificial
neural networks, which include the perceptron, radial basis function networks,
cascade correlation and the spike response model. From the world of probabilistic
methods we have discussed Bayesian networks in general, Markov processes, the
Bayes classifier and important related methods such as mixture models. Even-
tually, we have dealt with risk minimization methods such as the support vector
machine, linear discriminant analysis and ensemble methods such as boosting.

On the micro level, we have investigated the communalities and differences
of positive and negative convolution. The similarity theory of dual process mod-
els is built on this distinction. Convolution is the essential method for template
matching and autocorrelation. Hence, it is important in feature transformation
and categorization. Distance-based methods are used directly for categorization
(e.g. k-nearest neighbor classifier) but as well in similarity meta models (earth
mover’s distance, Hausdorff distance, dynamic time warping, etc.). There is a
fundamental analogy between similarity measures and kernels. An extended sim-
ilarity measure will include methods for transformational similarity, structural
alignment and predicate-based measurement.

For practical multimedia information retrieval, we have introduced a num-
ber of evaluation measures and tools. The king’s path employs cross validation
as the testing procedure. Recall, precision, F1 scores, interestingness measures,
information entropy and related measures can be used for the summarization
of experiments. The gathered results can be displayed in the form of receiver
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operating characteristic curves. Tools for application building include Weka (ma-
chine learning), Matlab (feature extraction, categorization) and R (information
filtering).

Furthermore, we have reviewed our results in various ways. We have distilled
lists of building blocks for feature transformation and categorization. These
were represented by neural models in the last chapter. The general goals of
good description and good categorization where discussed in the two review
chapters. Eventually, we have named and discussed the major challenges of
media understanding today and in the near future. Important points such as
the merging of interest point detection with Gestalt theory, the definition of
canonical sets of description methods and pushing the frontier of neuralization
are discussed in the remaining sections.

30.2 Essential Findings

This section lists the most important conclusions that should be drawn from
this book. Media-related findings, feature transformation and categorization are
investigated in this order. In the latter field we distinguish between the micro
level and the macro level of categorization, because the findings in these areas
build coherent clusters that are significantly different from each other.

We have three major media-related messages: Man is the measure when it
comes to what semantic context is; all media can be treated in the same way; the
rules of perception and cognition have to be taken into account in the processing
of media data. These findings are discussed in the consecutive paragraphs.

1. We have to put the human in the loop of iterative media understanding
because man is the measure. We have introduced the semantic scale to
raise the sensibility for this issue. Media understanding methods are of-
ten subsemantic (for example, most feature transformations) but as well
often supersemantic (for example, metric distance measurement in cate-
gorization). Both of these traps should be avoided, because they lower
the acceptance of media understanding results. Therefore, we have to con-
sider the results of psychology, psychophysics and cognition in the design
of multimedia information retrieval methods. These issues are discussed
below. As long as computational multimedia information retrieval trails
behind human sign recognition, it is advisable to integrate the user in the
– then, semiautomatic – media understanding process.

2. The media considered in this book have properties that make them sig-
nificantly different from each other. Next to varying numbers and types
of dimensions we have the fundamental problem of quantitative and qual-
itative samples: numbers and symbols. Still, as we could show, the basic



30.2. ESSENTIAL FINDINGS 569

scheme of media understanding remains the same: Summarization trans-
forms the input media object into a vector of description elements. Infor-
mation filtering can be used to improve the data quality of this description
vector. Eventually, a categorization process is employed that sets the sum-
mary into the context of an application. That requires the formulation of
a ground truth, i.e. the definition of signs, the frequency of their appear-
ance and their numeric description. In one sentence, the classifiers uses
the ground truth to transform the topology of feature space according to the
semantics of the application. This scheme can be applied iteratively to im-
prove once acquired predicates (class labels) further and thereby raise the
semantic level of the application. We conclude that the different proper-
ties of the media are captured by the feature transformations. As soon as
we have a description space, differences in the input media do not matter
anymore.

3. Psychophysics and other areas of psychological research provide us with
numerous valuable insights on how humans perceive media objects. It is
essential for computational machine understanding to imitate the majority
of these particularities. For example, in audio understanding we have to
respect the differences between frequency and pitch perception as well as
the difference between sound pressure level and perceived loudness. In the
visual domain, we have to deal with the differences in the perception of
particular colors. The recognition of edges and interest points is based
on more than just rational criteria. Psychological rules such as the laws
of Gestalt play an important role. Perceptual, cognitive and statistical
illusions have to be considered as well. Even though the majority of these
illusions stand for errors of cognition, these errors are still typically human.
It would not make sense to take a supersemantic point of view and neglect
these human insufficiencies – ignorance of multimedia information retrieval
would be the results. In the contrary, we have to appreciate them. Norm
theory is a field of particular interest, as issues such as representativeness,
anchoring and others have unfortunately been widely neglected – even in
areas where the methodology can be characterized as psychological (e.g.
technical chart analysis).

In the areas of feature transformation and information filtering we have in-
troduced dozens of methods that are applied in multimedia information retrieval
today. We have endeavored to re-introduce once famous, now almost forgotten
methods as well as those currently hyped that have potential for the future. In
the area of information filtering, principal component analysis is the method of
choice for redundancy elimination between the dimensions of feature space. The
Kalman filter appears near-optimal for the quantization of individual description
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elements. When it comes to feature transformation, we would like to point out
three major conclusions.

1. However different the input media and the desired results of feature trans-
formation, there are only three principal types of descriptions: points, in-
tervals and point sets. Examples for point features are peaks, averages and
other statistical moments. Typical intervals are variances and belief scores.
Point sets include histograms, templates and other semantic signs. These
three types of descriptions can be computed by summarization and corre-
lation. One typical form of summarization is averaging. Peak detection is
another. The two fundamental correlation operations are autocorrelation
and template matching. Interestingly, summarization and correlation can
be performed on symbols as well as quantities. Symbolic summarization
is, for example, text summarization. Structural alignment procedures (e.g.
dynamic time warping) provide a form of symbolic template matching. In
the quantitative domain, histogram building and edge detection are typical
examples.

2. Summarization and correlation appear in their clearest form in the fea-
ture transformations for one-dimensional (often, temporal) media. Two
examples from the audio domain are the mel frequency cepstral coefficients
and linear predictive coding. The first method provides a highly efficient
summary of the input media. Hence, processing has to include windowing
and decorrelation. Linear predictive coding is the classic autocorrelation
method – important in audio understanding since recurring patterns are
characteristic for this data type. Schemes similar to these two feature
transformations can also be applied on the other one-dimensional data
types. The correlogram is an autocorrelation method employed in biosig-
nal understanding. The sliding average is a summarization method in the
stock domain. The bottom line is that each feature transformation will pro-
vide one of two functions: summarization or correlation. A healthy media
understanding process will include both types of feature transformations:
often, first summarization and then sign recognition by correlation of the
summary with a template.

3. The visual sense is of particular interest for multimedia information re-
trieval today. The digital culture of the 21st century is a visual one. There-
fore, we have introduced a number of visual feature transformations. Like
many others, we believe that the visual description method of the future is
interest point detection. However, in order to be successful, the approach
has to fulfill two requirements. Firstly, it has to take object boundaries
into account. Secondly, it has to pay respect to the human way of per-
ception (psychophysics, see above). The first requirement can partially be
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fulfilled by the method directly. Interest points have a tendency to lie at
object boundaries and to gather at locations of concentrated information.
Additionally, the approach can be supported by semantic knowledge and
image segmentation. The most important message from psychophysics is
in our opinion that redundancy matters in the visual domain. Objects have
to be described by more points than just the characteristic ones in order
to be adequate. See the discussion in Chapter 14 for details.

Categorization and evaluation is the second major step of media understand-
ing. This is the point where human judgment comes into play: most notably in
the micro process but structurally as well in the macro process. Below, we first
list essential findings about the micro process and then about the macro process
of categorization.

1. Machine learning reflects some results of learning theory and of the psy-
chology of similarity, others not. For example, generalization is employed
in some micro processes and kernel functions but not in others. We could
show that the number of fundamental micro processes is limited: rule-
base, distance-based, belief-based and quantization-based are essentially
the methods of choice. All of these processes represent some of the neu-
ral characteristics of human cognition – none all. We have argued that
the optimal micro process is probably a dual process model of positive and
negative convolution. Convolution is the operator that implements cor-
relation. Frequently, positive convolution is employed for summarization
while negative convolution is employed for autocorrelation and template
matching. Intelligent kernel functions should behave like classifiers. In
particular, the kernel function is a similarity measure. Hence, it has to
take generalization and the thematic taxonomic configuration of the user
into account.

2. We could show that the two worlds of quantitative and qualitative similarity
measurement can be joined. In the past, distance measures have been em-
ployed to measure the similarity between quantities. Predicate-based mea-
sures have been used to compare symbols. Recent psychological findings
suggest that both approaches should be integrated in a dual process model.
In order to reach this goal, we have endeavored to define two scales of mea-
sures. We could show that the quantitative measures can be explained as
combinations of the dot product and the first order Minkowski distance
(city block distance). The predicative scale explains the predicate-based
measures as combinations of the number of co-occurrences and the Ham-
ming distance. In the next step, we showed the equivalence between dot
product and the number of co-occurrences for interval-scaled and nominal-
scaled data. In the same way, city block distance and Hamming distance
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are equivalent. Eventually, we could associate the similarity measurement
end of the joint scale (dot produce, number of co-occurrences) with positive
convolution and the distance measurement end with negative convolution,
which clears the way for a convolution-based dual micro process.

3. Psychology says that every individual has a characteristic tendency to
judge some similarity measurement problems thematically and others tax-
onomically. The relevance of this issue becomes clear when we understand
that taxonomic thinking is equivalent to positive convolution while nega-
tive convolution is the operator for thematic thinking. We conclude that
for the successful dual process model we have to identify the configuration
of the user. In the third part we have suggested a triad-based test for the
recognition of this parameter. The test uses phenomenological stimuli as
suggested by psychologists.

The major issues on the level of the macro process have to do with making
the large set of machine learning techniques handleable for media understanding
application.

1. Hence, we have defined a simple yet effective portfolio of classifiers. The
essential criterion for the macro process of categorization is whether it is
separating or hedging. A separating classifier will try to cut feature space
in the right way in two halves. In contrast, a hedger will endeavor to
fence off consistent regions in feature space and label them semantically.
The two types of classifiers have a representation in concept philosophy.
We could show that the classic theory is equivalent to separating while
the prototype theory is equivalent to hedging. Since concept theory, i.e.
the definition of signs by humans, has been discussed for more than 2400
years we can assume that all the fundamental answers are known today.
This makes us confident that the pool of machine learning methods covers
all relevant approaches as well. This insight reduces the machine learning
step of multimedia information retrieval to the selection of an appropriate
method. Then, the right mixture of flexibility and avoidance of overfitting
depends essentially on the quality of the training data.

2. Media understanding has to be employed iteratively in order to have a
chance of success. Above, we already stressed how important it is to put
the human in the loop. Even if this is not possible, it makes sense to
employ media understanding iteratively. In the first iteration, the quanti-
tative summaries can be transformed to (proto-)predicates that have little
semantic value. Consecutive rounds of media understanding will try to
elevate the semantic level step by step. In consequence, it will make sense
to employ different classifiers. In the earlier iterations, simple methods
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such as decision trees will have a high chance of success. Later iterations
will require the application of methods that are able to quantify the belief
in the direction of improvement. As psychological findings show, human
judgments vary widely and our confidence in our opinions is most of the
time not very strong. These particulars can be represented in multimedia
information retrieval for example by Bayesian methods.

3. Of the various evaluation methods introduced in this book, the measure
of stability and discrimination that was defined in Chapter 20 measures
exactly the properties of good feature spaces. Since the quality of catego-
rization stands and falls with the topology of feature space, we strongly
recommend using this measure to judge the quality of the feature trans-
formations and – if necessary – exchange them for more discriminating
methods.

The principal line of this book is to move from simple to complex problems.
Understanding the solutions for simple problems allowed us to analyze the more
complex problems. The result was a set of building blocks that are employed
in the feature transformations and the categorization methods. Quantization
and correlation/similarity measurement are the two methods that are central
for multimedia information retrieval. The first requires understanding the input
media, the second understanding the user.

30.3 Critical Review

This section should not be misunderstood as a general analysis of the feasibility
of media understanding approaches. Hopefully, we have provided this analysis
as a structural aspect of the entire discussion so far. Instead, we pick selected
issues that may have been underrepresented or even neglected. The flow of
argumentation follows – as always – the big picture.

In the introduction we argued that multimedia information retrieval is a
combination of signal processing (in the widest sense) and machine learning.
Looking back on the heap of methods this picture needs a slight correction.
Media understanding is neither straight signal processing nor straight machine
learning. For example, we do not require back transformations for the trans-
forms used to escape the gravity of the sample. Furthermore, we do not require
our classifiers to actually separate the data. This function should be provided
by the discriminating features. Eventually, the two domains (feature extraction
and categorization) merge more and more. As we saw in the discussion of the
building blocks: some ingredients of feature transformation are highly similar to
ingredients of categorization schemes. Quantization and correlation/similarity
measurement are the two outstanding examples. The analysis of methods and
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the neuralization of building blocks lead the way. We are positive that future
media understanding research will see an amalgamation of the employed meth-
ods.

So far, however, even the results for well-defined semantic application do-
mains are – to say the least – mediocre. The authors of [287] have investi-
gated this phenomenon on a general level and have arrived at some very inter-
esting conclusions. For the three principal dimensions: training data, feature
transformations, classifiers they have compared machine performance to human
performance. The result is that the training data and machine learning proce-
dures of man and computer perform comparably. The major difference lies in
the descriptions. The human brain appears to possess more flexible, detailed
and discriminative sign identification procedures. In comparison, our computa-
tional feature transformations are slow, unnecessarily global, representative and
non-discriminative. With the authors of this paper, we conclude that future
multimedia information retrieval research will benefit most from investments in
smarter feature transformations. The toolbox of categorization seems to be quite
complete. The toolbox of media summarization is not.

In the feature extraction domain, we have argued in the second part that
multi-dimensional wavelets would be desirable. The obvious advantage of such
wavelets would be straightforward transformation of the input data into a seman-
tically relevant spectrum. However, the disadvantages may also not be neglected.
The major problem would be an explosion of the dimensionality problem. Nec-
essarily, a multi-dimensional mother function would require several parameters
and scales of values. If this scheme should work, we would require human-
based research that tells us what parameters are really important and which
values they realistically might have. As often, human experience tells us that we
hardly ever have a balanced, complete view/model of our environment or some
decision problem. Still, we are able to find orientation and act reasonably. The
same philosophy would have to be introduced for successful media description:
What parameters are essential? What values may really occur? We conclude
that pushing the frontier of description would involve many more psychological
user studies.

A minor question that we might ask ourselves is whether or not there is
a gender aspect in the feature transformations employed today. The author
noticed in audio-related work that some audio feature transformations are sexist
in the sense that they are optimized for male speakers/singers. We believe that
such a gender imbalance will almost never be the result of the processing scheme,
rather of magic quantization. It goes without saying that such insufficiencies
need to be eliminated where they exist and avoided through gender-balanced
training media and ground truth. This is one reason why more weights should
be laid on the quality of the training data in multimedia information retrieval.

On the categorization level, one issue of interest is whether or not in times
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of dual process models the artful previous solutions for correct psychological
similarity measurement still make sense. One is the Krumhansl model that
was already discussed in the first part of the book. Another are psychological
Minkowski distances (Equation Q1 in Appendix B.1) that add two degrees of
freedom: Firstly, the a2-th root of the a1-th power of the differences is used.
The difference a2 6= a1 introduces several non-metric aspects of human-like mea-
surement. Secondly, measures with a1 < 1 are also non-metric. At least such
a a1 allows for violating the triangle equality. We believe that these models
are now obsolete since the thematic taxonomic parameter of the suggested dual
process model allows for defining arbitrary non-metric measures. That is, the
ideal dual process model makes the majority of the measures listed in the Ap-
pendix obsolete. An exception are the dynamic association measures (similarity
meta models) since these introduce an alignment meta process that is probably
justified by human cognition/behavior.

After all our praising of dual process models it may appear heretical to ask if
dual process models will really be the final solution for similarity measurement
in categorization micro processes? Future will tell. We believe that the time for
dual process models in machine learning will come. However, if their introduction
is not accompanied by a proper test for the thematic taxonomic configuration of
the individual user, the entire scheme may turn out as inflexible and inadequate
as the models employed today.

Examples Object
Segmentation Views

Grouping,
Annotation

Semantic
Objects

Recombination,

Annotation

Scene
Rules

Rendering Ground
Truth

Figure 30.1: Fast Ground Truth Building Procedure.

One final issue that needs discussion is ground truth building. We have seen
that ground truth is essential for many learning macro processes. We have em-
phasized several times that an appropriate ground truth has to be well-balanced,
complete, statistically representative, etc. Such a ground truth is hard to obtain
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– in particular, if there is no perspective of scientific merit involved. Further-
more, the methods required for ground truth building are clearly not engineering
methods. Rather, psycho-/sociological know-how is required. Therefore and de-
spite that, we would like to suggest a general scheme for efficient ground truth
building (Figure 30.1). The idea is semiotic: What we want is not an assembly
of media objects, but one of signs. Hence, in the first step we will take a set of
media objects that contains all relevant signs in the major views and segment
it by hand. The result is a large set of views of signs. In the second step, a
statistically representative group of users (balanced gender, age groups, etc.)
will annotate the signs semantically. The result is a list of semantic objects.
In the next step, groups of signs are related by users. The goal is to produce
as many meaningful combinations as possible. Relations are annotated as well,
which allows for the derivation of a set of scene composition rules. With anno-
tated views, composition rules and a statistical description of the user groups of
the to be developed media understanding application it is possible to render an
adequate ground truth automatically. We believe that this divide and conquer
strategy allows for solving the ground truth problem in a way superior to the
one used today.

The mentioned problems of multimedia information retrieval are only a few.
Many more do exist and have been addressed in this book. In the final section
we would like to turn our eyes from past and present to the future.

30.4 Outlook: To Do List

Now, we would like to take the opportunity and emphasize a few points that
should be solved in the near future of multimedia information retrieval research.
Other potential directions of future research were named and described in the
text where appropriate. Hence, we do not provide a full to do list below but
only one of selected issues that appear novel, interesting and rewarding to us.
The organization is as always: first come the media, then the descriptions, and
eventually the semantics.

The world of digital media is large: the retrieval problem can be approached
over various paths, some of which where pursued in this book. Many strategic
and operational issues remain unsolved today. One development that seems
relevant to us is that through digitalization the technical media characteristics
become more and more irrelevant. The shape of the digital media converges.
Therefore, maybe the summarization methods should also converge.

1. We consider a number of heterogenous digital media in this book and show
that they can be treated in very similar ways. We believe that the future in-
put of media understanding will be an unimedium composed of an (almost)
arbitrary number of channels with different origin and characteristics. On
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this unimedium all principal summarization methods should be applied
in order to provide the feature ground for semantic contextualization by
categorization. One first step in this direction would be the application of
audio feature transformations on other one-dimensional media types but as
well on visual data and symbolic media. It may also be rewarding to apply
spatial feature transformations on pseudo-spatial data such as windowed
Fourier spectra. Further below, we suggest a general scheme for automatic
description selection from such mixed feature transformations.

2. Successful multimedia information retrieval requires more specialized in-
teractive applications. For example, a zoological application would be de-
sirable that learns the rules of taxonomic description during application.
This would require a learning algorithm flexible enough for exchanging de-
scription elements during training and application – like humans do [287].

Figure 30.2: 3D TV Depth Map Example ( c© CNBC ).

3. One practical stimulation of future visual media understanding is the in-
troduction of 3D television. However depth information is introduced (e.g.
as a depth map, see the right part of Figure 30.2), it can be employed
to recognize object boundaries. Then, we will become able to apply local
descriptions of objects with higher accurateness and chance of success. An
early iteration of media understanding will lead to proto-signs that can be
improved and related iteratively in refinement cycles. We firmly believe
that the spreading of visual 3D content will be a great help for visual media
understanding.

The selection of features in media understanding is – compared to humans
– slow, inflexible and superficial [287]. More needs to be done in order to iden-
tify the diagnostic features as early as human perception and to use them as
effectively as our cognition.

1. We suppose to apply all available summarization and correlation meth-
ods on the proposed unimedium. The result is necessarily an overcom-
plete description of the input media content. For the reduction of feature
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space we suggest using the described information filtering methods but as
well ground truth-based methods. For example, an optimization algorithm
could be used to align the most discriminative description elements with
ground truth values of training samples. Genetic algorithms are tailor-
made for this purpose. For the evaluation, the measures introduced in
Chapter 20 could be employed. In a similar fashion, artificial feature
transformations could be rendered from the building blocks by genetic
recombination and evaluation of their performance.

Figure 30.3: Local Description of Color Boundaries ( c© CNBC ).

2. Interest points and flow vectors should only be computed at object bound-
aries and color segment boundaries. In the first part, we mentioned that
the luminance values typically employed for grayscale representation in
computer vision emphasize some colors while neglecting others. Hence, lo-
cal features detected on gray ground are only partially similar to features
detected on chromatic ground. Figure 30.3 shows an example. We sug-
gest performing local feature detection on well-defined hue values instead
of luminance values. Furthermore, the Gestalt laws should be taken into
account in order to guarantee full human-like description of visual objects.

3. The last word has not been spoken on the feature selection issue. Hu-
mans select diagnostic features quickly, computers fail. One approach to
improve the quality of descriptions could be an iterative media understand-
ing scheme in which short descriptions (only the first factors) are employed
which are enriched by additional description elements in consecutive itera-
tions. That would limit the recognition problem in the first iterations and
open additional space for discrimination in later – semantically higher –
iterations.

Though the toolbox of categorization appears quite satisfactory, there are
still a number of issues unsolved. Independent of the question if it would be
desirable to define an ’ideal’ classifier, work needs to be done to take over the
latest results of psychological research and learning theory into machine learning.
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1. An ideal classifier could look like a self-organizing map that employs the
Tenenbaum function for generalization, the proposed dual process model
for similarity measurement, factor analysis for redundancy elimination, a
choice model for the selection of the winning node and the feature selection
scheme introduced above. This classifier could be employed to provide an
early orientation point for categorization. The resulting map would help
to understand the topology of the media space and, in consequence, to
select an appropriate classifier (automatically) for the actual application
from the toolbox.

2. Following an idea of Kemp and Tenenbaum it would be desirable to take
the form of description space into account in categorization. Here, we can
understand form as the best possible visualization of the data. The Isomap
approach is a first attempt in this direction. Conditional probabilities of
the form P (form|description) could be employed to refine the belief scores
of classification. For example, a low conditional probability would reduce
the belief score as the description would obviously not fit the form of the
input data.

3. Eventually, we would like to emphasize once again that the findings of
psychological similarity research need to be reflected in multimedia infor-
mation retrieval. There is more than just the Euclidean distance: Dual
process models with individual configuration represent human similarity
judgment. Structural alignment as a meta-process and transformational
similarity as a specific distance measure augment the process. Psycholog-
ical similarity measurement should also be employed in kernel functions.
Distance to similarity conversion needs to be based on proper generaliza-
tion functions.

Our final word is that we hope that this introduction to multimedia informa-
tion retrieval provides a fair ground for practical work. We are convinced that
media understanding will gain more attention in the future. Methods should be
exchanged between research disciplines. Man should be the measure in applica-
tion design. Goggles is certainly not the last word.
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Appendix A

Mathematical Notation

A.1 Sets and Arrays

Name Description Type Definition Usage
O Medium (d-dimensional) Array [sl|s ∈ S ∧ l ∈ Ld] o ∈ O
F Description (1-dim) Array [sl|s ∈ S ∧ l ∈ L] f ∈ F
C Class (0-dim) Array [sl|s ∈ S ∧ l = ∅] c ∈ C
S Sample Set {x1, x2, ..} with xi float s ∈ S
L Location Set {x1, x2, ..} with xi float l ∈ Ld

Table A.1: Sets and Arrays.

A.2 Pre-defined Location Sets

Set Dimensions Description
Ltime {time} Time (Audio, Biosignal, Stock)
Lpos {x} Position (Bioinformation, Text)
Lpoint {x,y[,time]} Point (Image, Video)
Lmoore {x,y} Moore neighborhood (the eight cells surrounding

a central cell on a square lattice)
Lvn {x,y} Von Neumann neighborhood (3x3 cross)

Table A.2: Important Media Templates.
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A.3 Media Templates

Medium Description
obark Barkhausen curve
ocosine Cosine wave
ogauss Gaussian filter
ohaar Haar wavelet
olap Laplace operator
omel Mel curve
omexhat Mexican hat wave
onormal Normal distribution
osine Sine wave
osobh Horizontal Sobel operator
osobv Vertical Sobel operator

Table A.3: Important Media Templates.

A.4 Variables

Value Category Description
µ,m, σ, v, κ Moment Statistical mean, median, standard deviation,

variance, skewness
µk,r Moment Moment of k-th order at value r
λ, v Moment Eigenvalues and eigenvectors or singular

values and singular vectors
χxy, ρxy Moment Covariance and correlation of objects x, y
b, e Moment Belief, criterion, entropy, energy
r, p, f1 Moment Recall, precision, F1 score
ai Parameter Free parameter
αi Parameter Bound parameter
δ, δδ Parameter Change, change of change (e.g. in locations)
εi Parameter Limit, error or threshold
h Parameter Window size, VC dimension
w Weight Scalar, vector or array of weights

Table A.4: Important Values and Vectors.
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A.5 Operations

Operation Description
|.| Absolute value
‖ . ‖ Normed dot product
x+ y Merging of objects x, y
x⊗ y Convolution based on product
x⊗̄y Convolution based on difference
θ(o, l, ε) Neighborhood ε of object o at location l
dims(o) Number of dimensions of object o
size(o) = |o| Size of object
y = cut(o, lstart, lend) Cut object y from object o

from lstart to lend
y = chn(o, n) Cut n-th channel of object o into y
round(x, y) Rounds x to y bits accuracy
win(o) Window smoothing function
gt(o) Ground truth value of object o
m(x, y),m−1(x, y) Similarity measure, distance measure
mn(x, y) Meta-similarity measure (e.g. n =Hausdorff)
k(x, y) Kernel similarity measure
mean(x), stddev(x) Statistical moments
E(f) Expected value
P (x = n) Probability of x = n
P (x, y) Joint probability
P (x|y) Conditional probability
Q(x) Mixture of probability functions
perm(f) Power set
pp(o) Psychophysical transformation
y = ct(x), x = ct−1(y) Cosine transformation
y = ft(x), x = ft−1(y) Fourier transformation
y = wt(x), x = wt−1(y) Wavelet transformation
radon(o), hough(f) Radon/Hough transformation

Table A.5: Important Operations.
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A.6 Building Blocks

Operation Group Description
acorri() Extraction Autocorrelation
aggi() Extraction Aggregation
classify() Categorization Mother function
ccorri() Extraction Crosscorrelation
dcorri() Extraction Interpretation
estimatei() Categorization Density estimation
filter() Filtering Mother function
learni() Categorization Control loop
loci() Extraction Localization
measurei() Categorization Similarity measurement
quanti() General Quantization
transform() Extraction Mother function

Table A.6: Building Blocks.

A.7 Pseudo-Code Format

if .. then .. elsif ... else .. endif

for .. do .. endfor

foreach .. in .. do .. endfor

do .. while .. enddo

while .. do .. enddo

function .. takes .. begin .. return .. end

A.8 Some Expressions

Element Expression
Assignment :=
Equality =
Range of values begin : end[: step]
Standard iterators i, j
Standard variables x, y, z

Table A.7: Important expressions.



Appendix B

Similarity Models

See Chapter 28 for a thorough discussion of the listed measures.

B.1 Quantitative Similarity Measures

Below, x, y ∈ F are descriptions with elements xi, yi, K = size(x) = size(y).

Table B.1: Catalogue of Quantitative Similarity Measures.

No. Measure Description

Q1

a2

√√√√∑
i

|xi − yi|a1

K Generalized Minkowski distance
group of parameters a1, a2 and
dimensionality K (e.g. [215]).
For a1 = a2 = 1, 2,∞ we re-
ceive city block distance, Eu-
clidean distance and Chebyshev
distance, respectively. The latter
is defined as max

i
|xi − yi|.

Q2

∑
i xiyi

K
Dot product (e.g. [337])

Q3

∑
i

xiyi

√√√√∑
i

x
2
i

√√√√∑
i

y
2
i

Cosine measure, e.g., Gower
1967 [136]

Q4
∑
i

∑
j

(xi − yi)(xj − yj) Mahalanobis distance group
(with uniform covariance
weights) [239]

Q5
∑
i

xi.log
xi

yi
Kullback-Leibler divergence
[218]

Q6 −
∑
i

log
√
xiyi Bhattacharyya distance [32]

Q7

√√√√√√2− 2∑
i

log
√
xiyi

2 Hellinger distance [404]
...continued on next page
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Table B.1: Catalogue of Quantitative Similarity Measures.

No. Measure Description

Q8
∑
i

xi − yi
xi + yi

Canberra metric, Lance and
Williams 1967 [219]. Also known
as χ2 distance [315].

Q9

∑
i

xiyi∑
i

x
2
i +

∑
i

y
2
i −

∑
i

xiyi
Tanimoto index [365]

Q10

∑
i

(xi − yi)2

xi + yi
K Divergence coefficient, Clark

1952 [55]

Q11

∑
i

(xi − µ)(yi + µ)

σ

K Intra-class coefficient for classes
described by µ, σ, Webster 1952
[393]. For µ = 0, σ = 1 equiva-
lent to the dot product.

Q12

∑
i

(xi − µx)(yi − µy)

√√√√∑
i

(xi − µx)
2
√√√√∑

i

(yi − µy)
2

Correlation coefficient, for µx =
µy = 0 equivalent to the cosine
distance [409].

Q13

∑
i

xiyi −Km −m
∑
i

xi +m
∑
i

yi√√√√(∑
i

x
2
i −Km

2 − 2m
∑
i

xi

)(∑
i

y
2
i +Km

2 − 2m
∑
i

yi

) m =
xmax−xmin

2 , Cohen 1969
[58]

Q14

K−2∑
i=0

(
(xi − xi+1)− (yi − yi+1)

)2
Meehl index [263]

Q15
∑
i

min(xi, yi) Histogram intersection [361]

Q16
∑
i

xi log
(xi
yi

)
Kullback Leibler divergence [218]

Q17
∑
i

(xi − yi) log
(xi
yi

)
Jeffrey divergence [175]

Q18
∑
i

xi log
(xi
yi

)2
Exponential divergence [16]

Q19 1
2

∑
i

(xi − yi)2

xi
Kagan divergence [179]

B.2 Predicate-Based Similarity Measures

Below, a =
∑
i x ∩ y, b =

∑
i x \ y, c =

∑
i y \ x, d = K−a−b−c,K = size(x) =

size(y) of two predicate vectors x, y ∈ F with F = [sl|s ∈ S ∧ l ∈ L] and
s = {0, 1}.

Table B.2: Catalogue of Predicate-Based Similarity Measures.

No. Measure Description
P1 a Number of co-occurences
P2 a

a+b+c+d Russel and Rao 1940 [317]

...continued on next page
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Table B.2: Catalogue of Predicate-Based Similarity Measures.

No. Measure Description
P3 b+ c Hamming distance [151]. The squared

root of this measure is frequently called
binary Euclidean distance.

P4 a+d
a+b+c+d Simple matching coefficient [347] and

[130]
P5 a+ d Complement of Hamming distance [130]
P6 a− b− c Feature contrast model, Tversky 1977

[377]
P7 a

b+c Kulczynski 1927 [217]

P8 bc
K2 Pattern difference measure [7]

P9 a− bc Browsing pattern [84]

P10 a+ b+c
2 Köppen 1884 [207]

P11 a
a+b+c Jaccard 1908 [170]

P12 a
a+max(b,c) Braun 1932 [41]

P13 a
a+min(b,c) Ecological coexistence coefficient, Simp-

son 1943 [340]

P14 b+c
4K Variance dissimilarity measure [351]

P15
(b−c)2

K2 Baulieu 1989 [21], also size difference
[351]

P16 a+d
b+c Kulczynski 1927 [217]

P17 Ka
(a+b)(a+c) Forbes 1925 [106]. Gilbert and Wells use

the logarithm of this measure [121].

P18 a−b−c+d
K Hamann 1961 [150]

P19
K(b+c)−(b−c)2

K2 Baulieu 1989 [21]

P20
K(b+c)−(b−c)2

K2 Binary shape difference [351]

P21 a+d
K+b+c Rogers and Tanimoto 1960 [310]

P22 a+d
a+2b+2c+d Gower and Legendre 1986 [135]

P23
a−(a+b)(a+c)

2 Steffensen 1934 [353]
P24 2a

2a+b+c Czekanowski 1913 [64]. Sometimes di-
vided by 2 [135].

P25 4a
4a+b+c Sørensen 1948 [349]

P26 a
a+2b+2c Sneath and Sokal 1963 [344]

P27 8a
8a+b+c Anderberg 1973 [7]

P28 a2
(a+b)(a+c) Sorgenfrei 1958 [350]

P29 a√
(a+b)(a+c)

Independently defined by Driver and
Kroeber [79] and Ochiai [282]

P30 1
2 ( a
a+b + a

a+c ) Kulczynski 1927 [217]. Sometimes multi-
plied by 2 [163]

P31 ad Retrieval pattern [84]

P32
2(a+d)

2(a+d)+b+c Sneath and Sokal 1963 [344]. Sometimes
divided by 2 [135].

P33 a
ab+ac

2 +bc
Mountford 1962 [273]

P34 a2−bc
(a+b)(a+c) McConnaughey 1964 [258]

P35
K(a− 1

2 )2

(a+b)(a+c) Jones and Curtis 1967 [177]

P36 ad−bc
K Maron and Kuhns 1960 [247]

P37 bc
ad Q0 from Batagelj and Bren [20]. In-

versely applied as odds ratio on [212]

P38
Ka−(a+b)(a+c)
Ka+(a+b)(a+c) Tarwid 1960 [366]

P39 a√
(a+b)(a+c)

− a+max(b,c)
2 Fager and McGowan 1963 [93]

P40 2(ad− bc) Stuart’s τc [358]

P41
(a+b)(1−a−b)−c

(a+b)(1−a−b) Köppen 1870 [206]

...continued on next page
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Table B.2: Catalogue of Predicate-Based Similarity Measures.

No. Measure Description

P42 1
2 ( a
a+b+c + d

b+c+d ) Hawkins and Dotson 1975 [156]

P43
a−(a+b)(a+c)

a+min(b,c)−(a+b)(a+c) Benini 1901 [28]

P44
a−(a+b)(a+c)

a+b+c−(a+b)(a+c) Gilbert’s coefficient [120]

P45
√
ad+a−b−c√
ad+a+b+c

Baroni-Urbani and Buser [17]

P46
a−(a+b)(a+c)

1− |b−c|2 −(a+b)(a+c)
Modified Gini index [124]

P47 ad−bc
(a+c)(b+d) Peirce 1884 [292]

P48
2(ad−bc)
K(2a+b+c) Coefficient of arithmetic means, Kuhns

1965 [216]

P49
a−(a+b)(a+c)√

(1−(a+b)2)(1−(a+c)2)
Gini index [123]

P50
a−(a+b)(a+c)

(a+b)(c+d)(a+c)(b+d) Eyraud 1936 [92]

P51
2min(a,d)−b−c
2min(a,d)+b+c Goodman and Kruskal 1954 [131]

P52 ab+bc
ab+2bc+cd Peirce 1884 [292]

P53 cos 180
√
bc√

ad+
√
bc

Pearson and Heron 1913 [291]

P54
max(a,b)+max(c,d)−max(a+c,b+d)

1−max(a+c,b+d) Relative decrease of error probability
[145]

P55
max(a,c)+max(b,d)−max(a+b,c+d)

1−max(a+b,c+d) Goodman and Kruskal 1954 [131] in anal-
ogy to [145]

P56
4(ad−bc)

(a+d)2+(b+c)2
Michael 1920 [265]

P57 ad√
(a+b)(a+c)(b+d)(c+d)

Sneath and Sokal 1963 [344]

P58 ad−bc
ad+bc Yule’s Q 1911 [409]

P59 ad−bc
min((a+b)(a+c),(b+d)(c+d)) Cole 1949 [59]

P60 ad−bc
min((a+b)(b+d),(a+c)(c+d)) Loevinger’s H [233]

P61
a+d−max(a,d)− b+c2

1−max(a,d)− b+c2
Goodman and Kruskal 1954 [131]

P62
2(ad−bc)

(a+b)(c+d)+(a+c)(b+d) Maxwell and Pilliner 1968 [253]

P63 ad−bc√
(a+b)(a+c)(b+d)(c+d)

Pearson 1926 [290]. Goodman and
Kruskal [132] suggest the squared Pear-
son coefficient.

P64
√
ad+a√

ad+a+b+c
Baroni-Urbani and Buser [17]

P65 1
4 .(

a
a+b + a

a+c + d
b+d + d

c+d ) Sneath and Sokal 1963 [344]

P66
4(ad−bc)−(b−c)2
(2a+b+c)(b+c+2d) Scott 1955 [328]

P67
√
ad−
√
bc√

ad+
√
bc

Yule’s Y coefficient [410]

P68
(ad)

3
4 −(bc)

3
4

(ad)
3
4 +(bc)

3
4

Digby 1983 [76]

P69 ad−bc
K(1− a

(a+b)(a+c) )(2a+b+c− (a+b)∗(a+c)
K

)
Proportion of overlap above indepen-
dence, Kuhns 1965 [216]

P70
2(ad−bc)

(a+b)(b+d)+(a+c)(c+d) Cohen’s κ [57]

P71
(ad−bc)((a+b)(b+d)+(a+c)(c+d))

2(a+b)(a+c)(b+d)(c+d) Fleiss 1975 [101]

P72

√
2(ad−bc)

(ad−bc)2−(a+b)(c+d)(a+c)(b+d)
Mean square contingency. Cole 1949 [59]

P73 K( a2
(a+b)(a+c) + b2

(a+b)(b+d) + Chi-square statistics [411], some-

c2
(a+b)(c+d) + d2

(b+d)(c+d) − 1) times also divided by K [60] and/or
square rooted [188]

P74
max(a,b)+max(c,d)+max(a,c)+max(b,d)

2−max(a+c,b+d)−max(a+b,c+d) − Goodman and Kruskal 1954 [131]
max(a+c,b+d)+max(a+b,c+d)

2−max(a+c,b+d)−max(a+b,c+d) in analogy to [145], sometimes also di-
vided by K2. Redundantly written for
better readability.

...continued on next page
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Table B.2: Catalogue of Predicate-Based Similarity Measures.

No. Measure Description

P75
(a−(a+b)(a+c))2+(b−(a+b)(b+d))2

a+b
1−(a+c)2−(b+d)2

+ Goodman’s and Kruskal’s τb

(c−(a+c)(c+d))2+(d−(b+d)(c+d))2
c+d

1−(a+c)2−(b+d)2
Goodman 1954 [131]. Redundantly writ-
ten for better readability.

B.3 Similarity Meta-Models

No. Measure Description
M1 mi(x, y) + δx + δy Density model, Krumhansl 1978

[214]. See Chapter 17 for a
discussion of the density terms
δx, δy .

M2
√

2K−mi(x,y)√
2K+mi(x,y)

Catell 1949 [50]

M3 log

(
mi(x,y)di(a,b)
mi(a,y)di(x,b)

)
Cayley Klein model [196], where
a, b are intersection points of the
geodesic line through x, y with
the fundamental conic section.

M4 mi(x, y)K−a Product rule defined by Estes
[90], where a is the number of
communalities of x, y, without
weights.

M5 inf
x

(
sup
y

(
mi(x, y)

))
Bottleneck distance.

M6 max

(
sup
x

(
inf
y

(
mi(x, y)

))
, sup
y

(
inf
x

(
mi(x, y)

)))
Hausdorff model (e.g. [96])

M7 inf
x̄∈perm(x)

(∑
j

mi(x̄j , yj)c(x̄j , yj)

K

)
Mallows distance [240] (a.k.a.
Wasserstein distance, earth
mover’s distance), where c() is
the cost function weighting the
distances.

M8 inf
x,y

max
t

(
mi(x(t), y(t))

)
Fréchet distance for two repa-
rameterizations x, y ∈ [0, 1] of
t (e.g. curves in parameterized
form).

Table B.3: Catalogue of Similarity Meta-Models.
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B.4 Dual Process Models

Operation Predicate Quantity FFCM QM

x ∩ y a
∑
i xiyi min(x, y) x+y

2 > q → x+y
2 : 0

x \ y b
∑
i (xi − yi)∀xi > yi max(x− y, 0) x− y > q → x− y : 0

Table B.4: Catalogue of Operators of Dual Process Models.



Appendix C

Media Programming Tools

In the tables of this chapter we employ the symbol ⊕ for a fully present feature,
	 for an absent feature and � for a feature that is partially present or under
development.

C.1 General Properties

Property Matlab OpenCV R Weka
Audio import and export ⊕ 	 	 	
Basic audio processing ⊕ 	 	 	
Basic image processing ⊕ ⊕ 	 	
Basic text processing � 	 	 	
Basic video processing ⊕ ⊕ 	 	
Biosignal import/export � 	 	 	
Command history ⊕ 	 ⊕ 	
Graphical user interface ⊕ 	 � ⊕
Image import/export ⊕ ⊕ 	 	
License commercial free free free
Programming language proprietary C proprietary Java
Symbolic import/export � 	 ⊕ 	
User interface designer ⊕ � 	 	
Variable editor ⊕ 	 ⊕ �
Video import/export ⊕ ⊕ 	 	

Table C.1: General Properties of Media Understanding Software.
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C.2 Feature Transformations

Weka is not considered in this table, because this software does not provide any
functions for feature transformation.

Property Matlab OpenCV R
Biosignal features ⊕ 	 	
Color features ⊕ ⊕ 	
General signal processing ⊕ � �
Integral transforms ⊕ ⊕ ⊕
Local features ⊕ ⊕ 	
Motion features ⊕ ⊕ 	
MPEG-7 descriptions � � 	
Psychophysical transforms � 	 	
Shape features � ⊕ 	
Spectral audio features ⊕ ⊕ 	
Template matching � ⊕ 	
Texture features ⊕ ⊕ 	
Time-based audio features ⊕ 	 	

Table C.2: Feature Transformations in Matlab, OpenCV and R.

C.3 Information Filtering and Visualization

Property Matlab OpenCV R Weka
Correlation analysis ⊕ ⊕ ⊕ 	
Factor analysis ⊕ ⊕ ⊕ 	
Kalman filter ⊕ ⊕ � 	
Normalization ⊕ ⊕ ⊕ ⊕
Regression ⊕ ⊕ ⊕ 	
Source separation ⊕ 	 � 	
Statistical moments ⊕ ⊕ ⊕ ⊕
Statistical testing ⊕ 	 ⊕ 	
Variable plotter ⊕ � ⊕ ⊕

Table C.3: Information Filtering and Visualization in Media Understanding Soft-
ware.
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C.4 Categorization and Evaluation

Property Matlab OpenCV R Weka
Bayesian classifier ⊕ ⊕ ⊕ ⊕
Bayesian network � 	 ⊕ ⊕
Boosting ⊕ ⊕ ⊕ �
Cluster analysis ⊕ 	 ⊕ ⊕
Decision tree � ⊕ ⊕ 	
Dynamic time warping ⊕ 	 	 	
Expectation maximization ⊕ ⊕ ⊕ 	
Gaussian mixture model ⊕ 	 ⊕ ⊕
Gibbs sampling � 	 � 	
Hidden Markov model ⊕ 	 ⊕ ⊕
K-means ⊕ � ⊕ ⊕
K-nearest neighbor ⊕ ⊕ ⊕ ⊕
Linear discriminant analysis ⊕ 	 ⊕ ⊕
Perceptron network � ⊕ ⊕ ⊕
Radial basis function � 	 ⊕ ⊕
Self-organizing map ⊕ 	 ⊕ �
Support vector machine ⊕ ⊕ � ⊕
Vector space model ⊕ 	 ⊕ �

Table C.4: Categorization in Media Understanding Software.

C.5 Mobile Implementation

Property Android iPhone Symbian
Audio capturing ⊕ ⊕ ⊕
Localization system ⊕ ⊕ ⊕
Socket communication ⊕ ⊕ ⊕
Video capturing ⊕ ⊕ ⊕

Table C.5: Properties of Environments for Mobile Implementation of Media
Understanding Applications.
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Abstract

Multimedia information retrieval: That is the desire to make computers see, hear
and understand like humans do. Is it possible to give perception to machines,
to make them understand facial expressions, hummed melodies, stock charts
and ECG curves? If yes, the computer would become an even more valuable
companion in business and private life. Think of the possibilities in, for example,
healthcare, home security, online customer support or market analysis. This
book explains what is possible in multimedia information retrieval today and
what is not. We introduce the basic concepts, explain why the first step is always
summarization and the second classification, which is essentially applying human
understanding of some context on the summary. We group and discuss the
various methods that have been proposed for the summarization of audio, visual
and other media information. In classification, we build on today’s psychological
understanding of human cognition. Successfully, we transfer concepts of human
similarity perception on machine classification. We cluster machine learning
methods by their approach, model and process. On top of that, we link back
from the state of the art methods of multimedia information retrieval to human
cognition: We propose artificial neural structures for the building blocks of media
summarization and classification. The result is a balanced introduction into the
field that starts from graduate IT knowledge and ends at the current frontiers
of multimedia research.
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